{"title":"Security Constrained Unit Commitment with Corrective Transmission Switching","authors":"A. Ramesh, Xingpeng Li","doi":"10.1109/NAPS46351.2019.9000308","DOIUrl":null,"url":null,"abstract":"Traditionally, power system operations use a static network to deliver power and meet demand optimally. Network topology reconfiguration through transmission switching (TS) has gained significant interest recently to reduce the operational cost of power system operations. However, implementation of TS also causes large disturbance in the network and as a result the use of corrective transmission switching (CTS) in response to power system contingencies is currently being researched extensively. This paper emphasizes the importance of CTS to accomplish flexible transmission in N-1 security-constrained unit commitment (SCUC) model. An N-1 SCUC mathematical model implementing a dynamic network in the post-contingency scenario is proposed as opposed to current industry practices of static network in short-term operations. The proposed model is tested and validated on the IEEE 24-bus system. The proposed model results in cost-effective implementation and leads to overall reduced cost, and congestion reduction in the post-contingency scenario.","PeriodicalId":175719,"journal":{"name":"2019 North American Power Symposium (NAPS)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS46351.2019.9000308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Traditionally, power system operations use a static network to deliver power and meet demand optimally. Network topology reconfiguration through transmission switching (TS) has gained significant interest recently to reduce the operational cost of power system operations. However, implementation of TS also causes large disturbance in the network and as a result the use of corrective transmission switching (CTS) in response to power system contingencies is currently being researched extensively. This paper emphasizes the importance of CTS to accomplish flexible transmission in N-1 security-constrained unit commitment (SCUC) model. An N-1 SCUC mathematical model implementing a dynamic network in the post-contingency scenario is proposed as opposed to current industry practices of static network in short-term operations. The proposed model is tested and validated on the IEEE 24-bus system. The proposed model results in cost-effective implementation and leads to overall reduced cost, and congestion reduction in the post-contingency scenario.