Context-Aware Personality Inference in Dyadic Scenarios: Introducing the UDIVA Dataset

Cristina Palmero, Javier Selva, Sorina Smeureanu, Julio C. S. Jacques Junior, Albert Clapés, Alexa Mosegu'i, Zejian Zhang, D. Gallardo-Pujol, G. Guilera, D. Leiva, Sergio Escalera
{"title":"Context-Aware Personality Inference in Dyadic Scenarios: Introducing the UDIVA Dataset","authors":"Cristina Palmero, Javier Selva, Sorina Smeureanu, Julio C. S. Jacques Junior, Albert Clapés, Alexa Mosegu'i, Zejian Zhang, D. Gallardo-Pujol, G. Guilera, D. Leiva, Sergio Escalera","doi":"10.1109/WACVW52041.2021.00005","DOIUrl":null,"url":null,"abstract":"This paper introduces UDIVA, a new non-acted dataset of face-to-face dyadic interactions, where interlocutors perform competitive and collaborative tasks with different behavior elicitation and cognitive workload. The dataset consists of 90.5 hours of dyadic interactions among 147 participants distributed in 188 sessions, recorded using multiple audiovisual and physiological sensors. Currently, it includes sociodemographic, self- and peer-reported personality, internal state, and relationship profiling from participants. As an initial analysis on UDIVA, we propose a transformer-based method for self-reported personality inference in dyadic scenarios, which uses audiovisual data and different sources of context from both interlocutors to regress a target person’s personality traits. Preliminary results from an incremental study show consistent improvements when using all available context information.","PeriodicalId":313062,"journal":{"name":"2021 IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACVW52041.2021.00005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

This paper introduces UDIVA, a new non-acted dataset of face-to-face dyadic interactions, where interlocutors perform competitive and collaborative tasks with different behavior elicitation and cognitive workload. The dataset consists of 90.5 hours of dyadic interactions among 147 participants distributed in 188 sessions, recorded using multiple audiovisual and physiological sensors. Currently, it includes sociodemographic, self- and peer-reported personality, internal state, and relationship profiling from participants. As an initial analysis on UDIVA, we propose a transformer-based method for self-reported personality inference in dyadic scenarios, which uses audiovisual data and different sources of context from both interlocutors to regress a target person’s personality traits. Preliminary results from an incremental study show consistent improvements when using all available context information.
二元场景中上下文感知的人格推断:引入UDIVA数据集
本文介绍了UDIVA,一个新的面对面二元互动的非行为数据集,其中对话者执行具有不同行为引出和认知工作量的竞争和协作任务。该数据集由分布在188次会议中的147名参与者之间90.5小时的二元互动组成,使用多种视听和生理传感器记录。目前,它包括社会人口学、自我和同伴报告的个性、内部状态和参与者的关系分析。作为对UDIVA的初步分析,我们提出了一种基于转换器的二元情景下自我报告人格推断方法,该方法使用来自对话者的视听数据和不同的上下文来源来回归目标人的人格特征。一项渐进式研究的初步结果表明,在使用所有可用的上下文信息时,改进是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信