Towards Federated Learning using FaaS Fabric

Mohak Chadha, Anshul Jindal, M. Gerndt
{"title":"Towards Federated Learning using FaaS Fabric","authors":"Mohak Chadha, Anshul Jindal, M. Gerndt","doi":"10.1145/3429880.3430100","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) enables resource-constrained edge devices to learn a shared Machine Learning (ML) or Deep Neural Network (DNN) model, while keeping the training data local and providing privacy, security, and economic benefits. However, building a shared model for heterogeneous devices such as resource-constrained edge and cloud makes the efficient management of FL-clients challenging. Furthermore, with the rapid growth of FL-clients, the scaling of FL training process is also difficult. In this paper, we propose a possible solution to these challenges: federated learning over a combination of connected Function-as-a-Service platforms, i.e., FaaS fabric offering a seamless way of extending FL to heterogeneous devices. Towards this, we present FedKeeper, a tool for efficiently managing FL over FaaS fabric. We demonstrate the functionality of FedKeeper by using three FaaS platforms through an image classification task with a varying number of devices/clients, different stochastic optimizers, and local computations (local epochs).","PeriodicalId":224350,"journal":{"name":"Proceedings of the 2020 Sixth International Workshop on Serverless Computing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 Sixth International Workshop on Serverless Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3429880.3430100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Federated learning (FL) enables resource-constrained edge devices to learn a shared Machine Learning (ML) or Deep Neural Network (DNN) model, while keeping the training data local and providing privacy, security, and economic benefits. However, building a shared model for heterogeneous devices such as resource-constrained edge and cloud makes the efficient management of FL-clients challenging. Furthermore, with the rapid growth of FL-clients, the scaling of FL training process is also difficult. In this paper, we propose a possible solution to these challenges: federated learning over a combination of connected Function-as-a-Service platforms, i.e., FaaS fabric offering a seamless way of extending FL to heterogeneous devices. Towards this, we present FedKeeper, a tool for efficiently managing FL over FaaS fabric. We demonstrate the functionality of FedKeeper by using three FaaS platforms through an image classification task with a varying number of devices/clients, different stochastic optimizers, and local computations (local epochs).
迈向使用FaaS结构的联邦学习
联邦学习(FL)使资源受限的边缘设备能够学习共享的机器学习(ML)或深度神经网络(DNN)模型,同时将训练数据保持在本地,并提供隐私、安全和经济效益。然而,为异构设备(如资源受限的边缘和云)构建共享模型使得高效管理fl客户机具有挑战性。此外,随着外语客户的快速增长,外语培训过程的规模化也变得困难。在本文中,我们提出了一个可能的解决方案来应对这些挑战:通过连接的功能即服务平台的组合进行联邦学习,即FaaS结构提供了一种将FL扩展到异构设备的无缝方式。为此,我们提出了FedKeeper,一个在FaaS结构上有效管理FL的工具。我们通过使用三个FaaS平台来演示FedKeeper的功能,通过不同数量的设备/客户端,不同的随机优化器和局部计算(局部epoch)来完成图像分类任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信