Joy Li, S. D. Elton, Simon Herfurth, Peter Q. C. Ly
{"title":"Hardware efficient digital channeliser designs for radar intercept applications","authors":"Joy Li, S. D. Elton, Simon Herfurth, Peter Q. C. Ly","doi":"10.1109/RADAR.2013.6652037","DOIUrl":null,"url":null,"abstract":"Radio frequency (RF) signal intercept systems, such as electronic support (ES) receivers, are inherently wideband by design to provide spectral surveillance over a wide frequency range. To meet both sensitivity and frequency coverage requirements, a digital channelised receiver architecture, such as that proposed in [1], is very attractive. An improved channeliser-synthesiser architecture, which provides continuous coverage of the receiver bandwidth, has also been proposed in [5] and we provide details of a design used by DSTO in its on-going development of an experimental ES Testbed. Despite their advantages, both of these receiver architectures have a fixed channel bandwidth that cannot provide optimal bandwidth reduction for the detection and processing of a diverse set of signals, such as that encountered in radar intercept applications. In this paper, a hardware efficient, cascaded channeliser architecture is proposed which allows a wideband radar intercept receiver to dynamically customise its channel bandwidth to the bandwidth of an intercepted signal in real-time.","PeriodicalId":365285,"journal":{"name":"2013 International Conference on Radar","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Radar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2013.6652037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Radio frequency (RF) signal intercept systems, such as electronic support (ES) receivers, are inherently wideband by design to provide spectral surveillance over a wide frequency range. To meet both sensitivity and frequency coverage requirements, a digital channelised receiver architecture, such as that proposed in [1], is very attractive. An improved channeliser-synthesiser architecture, which provides continuous coverage of the receiver bandwidth, has also been proposed in [5] and we provide details of a design used by DSTO in its on-going development of an experimental ES Testbed. Despite their advantages, both of these receiver architectures have a fixed channel bandwidth that cannot provide optimal bandwidth reduction for the detection and processing of a diverse set of signals, such as that encountered in radar intercept applications. In this paper, a hardware efficient, cascaded channeliser architecture is proposed which allows a wideband radar intercept receiver to dynamically customise its channel bandwidth to the bandwidth of an intercepted signal in real-time.