{"title":"\"You might think about slightly revising the title”: Identifying Hedges in Peer-tutoring Interactions","authors":"Yann Raphalen, C. Clavel, Justine Cassell","doi":"10.18653/v1/2022.acl-long.153","DOIUrl":null,"url":null,"abstract":"Hedges have an important role in the management of rapport. In peer-tutoring, they are notably used by tutors in dyads experiencing low rapport to tone down the impact of instructions and negative feedback.Pursuing the objective of building a tutoring agent that manages rapport with teenagers in order to improve learning, we used a multimodal peer-tutoring dataset to construct a computational framework for identifying hedges. We compared approaches relying on pre-trained resources with others that integrate insights from the social science literature. Our best performance involved a hybrid approach that outperforms the existing baseline while being easier to interpret. We employ a model explainability tool to explore the features that characterize hedges in peer-tutoring conversations, and we identify some novel features, and the benefits of a such a hybrid model approach.","PeriodicalId":352845,"journal":{"name":"Annual Meeting of the Association for Computational Linguistics","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Meeting of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.acl-long.153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Hedges have an important role in the management of rapport. In peer-tutoring, they are notably used by tutors in dyads experiencing low rapport to tone down the impact of instructions and negative feedback.Pursuing the objective of building a tutoring agent that manages rapport with teenagers in order to improve learning, we used a multimodal peer-tutoring dataset to construct a computational framework for identifying hedges. We compared approaches relying on pre-trained resources with others that integrate insights from the social science literature. Our best performance involved a hybrid approach that outperforms the existing baseline while being easier to interpret. We employ a model explainability tool to explore the features that characterize hedges in peer-tutoring conversations, and we identify some novel features, and the benefits of a such a hybrid model approach.