Learning disease severity for capsule endoscopy images

R. Kumar, P. Rajan, Srdan Bejakovic, S. Seshamani, G. Mullin, T. Dassopoulos, Gregory Hager
{"title":"Learning disease severity for capsule endoscopy images","authors":"R. Kumar, P. Rajan, Srdan Bejakovic, S. Seshamani, G. Mullin, T. Dassopoulos, Gregory Hager","doi":"10.1109/ISBI.2009.5193306","DOIUrl":null,"url":null,"abstract":"Wireless capsule endoscopy (CE) is increasing being used to assess several gastrointestinal(GI) diseases and disorders. Current clinical methods are based on subjective evaluation of images. In this paper, we develop a method for ranking lesions appearing in CE images. This ranking is based on pairwise comparisons among representative images supplied by an expert. With such sparse pairwise rank information for a small number of images, we investigate methods for creating and evaluating global ranking functions. In experiments with CE images, we train statistical classifiers using color and edge feature descriptors extracted frommanually annotated regions of interest. Experiments on a data set using Crohn's disease lesions for lesion severity are presented with the developed ranking functions achieve high accuracy rates.","PeriodicalId":272938,"journal":{"name":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2009.5193306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Wireless capsule endoscopy (CE) is increasing being used to assess several gastrointestinal(GI) diseases and disorders. Current clinical methods are based on subjective evaluation of images. In this paper, we develop a method for ranking lesions appearing in CE images. This ranking is based on pairwise comparisons among representative images supplied by an expert. With such sparse pairwise rank information for a small number of images, we investigate methods for creating and evaluating global ranking functions. In experiments with CE images, we train statistical classifiers using color and edge feature descriptors extracted frommanually annotated regions of interest. Experiments on a data set using Crohn's disease lesions for lesion severity are presented with the developed ranking functions achieve high accuracy rates.
了解疾病严重程度的胶囊内窥镜图像
无线胶囊内窥镜(CE)越来越多地用于评估几种胃肠道(GI)疾病和失调。目前的临床方法是基于对图像的主观评价。在本文中,我们开发了一种方法来排序病变出现在CE图像。这个排名是基于专家提供的代表性图像的两两比较。利用少量图像的稀疏成对排序信息,我们研究了创建和评估全局排序函数的方法。在CE图像的实验中,我们使用从手动注释的感兴趣区域提取的颜色和边缘特征描述符来训练统计分类器。在克罗恩病病变严重程度的数据集上进行了实验,所开发的排序函数达到了较高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信