Design and Implementation of Edge Computing for Detection on Embedded Electromobility

Ching-Lung Su, W. Lai, Jun-Yun Wu, Pin-Yi Wang
{"title":"Design and Implementation of Edge Computing for Detection on Embedded Electromobility","authors":"Ching-Lung Su, W. Lai, Jun-Yun Wu, Pin-Yi Wang","doi":"10.1109/AI4I51902.2021.00027","DOIUrl":null,"url":null,"abstract":"The proposed algorithm architecture of deep learning after darknet dropout are porting on embedded evaluation board with artificial intelligence board of Nvidia Jetson TX2. This article uses the post-training results to implement the actual road testing of edge computing. This design presents accurate identification of vehicles, front signal of traffic light status, road speed limit signs, and vehicle location for safe driving behavior modification system.","PeriodicalId":114373,"journal":{"name":"2021 4th International Conference on Artificial Intelligence for Industries (AI4I)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference on Artificial Intelligence for Industries (AI4I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AI4I51902.2021.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The proposed algorithm architecture of deep learning after darknet dropout are porting on embedded evaluation board with artificial intelligence board of Nvidia Jetson TX2. This article uses the post-training results to implement the actual road testing of edge computing. This design presents accurate identification of vehicles, front signal of traffic light status, road speed limit signs, and vehicle location for safe driving behavior modification system.
嵌入式电动汽车边缘计算检测的设计与实现
本文提出的暗网辍学后深度学习算法架构在Nvidia Jetson TX2人工智能板的嵌入式评估板上进行了移植。本文利用后训练结果实现边缘计算的实际道路测试。本设计为安全驾驶行为修改系统提供了车辆的准确识别、交通灯状态前信号、道路限速标志、车辆位置等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信