CFS-DT : a Combined Feature Selection and Decision Tree based Method for Octane Number Prediction

Yuehua Yue, Lianyin Jia, Hongsong Zhai, Ming Kong, Mengjuan Li
{"title":"CFS-DT : a Combined Feature Selection and Decision Tree based Method for Octane Number Prediction","authors":"Yuehua Yue, Lianyin Jia, Hongsong Zhai, Ming Kong, Mengjuan Li","doi":"10.1109/ICDSBA51020.2020.00033","DOIUrl":null,"url":null,"abstract":"Octane number (ON) is the most important index of vehicle gasoline specification. Due to the complexity of refining process, the equipment variety, a large number of features are collected, which makes it difficult to predict ON of gasoline. In this paper, we propose a combined feature selection and decision tree based prediction method, CFS-DT, which combines low variance filtering, high correlation filtering and random forest to execute feature selection on a large number of original feature first. After that, a decision tree(DT) is trained for ON prediction on selected features. Experiments are carried out on datasets collected from 2020 Huawei cup Mathematical Modeling show that our model has a good effectiveness and achieves a 89% prediction precision.","PeriodicalId":354742,"journal":{"name":"2020 4th Annual International Conference on Data Science and Business Analytics (ICDSBA)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th Annual International Conference on Data Science and Business Analytics (ICDSBA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSBA51020.2020.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Octane number (ON) is the most important index of vehicle gasoline specification. Due to the complexity of refining process, the equipment variety, a large number of features are collected, which makes it difficult to predict ON of gasoline. In this paper, we propose a combined feature selection and decision tree based prediction method, CFS-DT, which combines low variance filtering, high correlation filtering and random forest to execute feature selection on a large number of original feature first. After that, a decision tree(DT) is trained for ON prediction on selected features. Experiments are carried out on datasets collected from 2020 Huawei cup Mathematical Modeling show that our model has a good effectiveness and achieves a 89% prediction precision.
CFS-DT:基于特征选择和决策树的辛烷值预测方法
辛烷值(ON)是车用汽油规格最重要的指标。由于炼油工艺复杂,设备种类繁多,收集了大量的特征,给汽油的ON预测带来了困难。本文提出了一种结合特征选择和决策树的预测方法CFS-DT,该方法将低方差滤波、高相关滤波和随机森林相结合,首先对大量原始特征进行特征选择。然后,对所选特征训练决策树(DT)进行ON预测。在2020年华为杯数学建模的数据集上进行的实验表明,我们的模型具有良好的有效性,预测精度达到89%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信