{"title":"A Data-Flow Network That Represents First-Order Logic for Inference","authors":"Hideaki Suzuki, Mikio Yoshida, H. Sawai","doi":"10.1109/TAAI.2012.44","DOIUrl":null,"url":null,"abstract":"A method to represent first-order predicate logic (Horn clause logic) by a data-flow network is presented. Like a data-flow computer for a von Neumann program, the proposed network explicitly represents the logical structure of a declarative program by unlabeled edges and operation nodes. In the deduction, the network first propagates symbolic tokens to create an expanded AND/OR network by the backward deduction, and then executes unification by a newly developed method to solve simultaneous equations buried in the network. The paper argues the soundness and completeness of the network in a conventional way, then explains how a kind of ambiguous solution is obtained by the new developed method. To examine the method's convergence property, numerical experiments are also conducted with some simple data-flow networks.","PeriodicalId":385063,"journal":{"name":"2012 Conference on Technologies and Applications of Artificial Intelligence","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Conference on Technologies and Applications of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAAI.2012.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A method to represent first-order predicate logic (Horn clause logic) by a data-flow network is presented. Like a data-flow computer for a von Neumann program, the proposed network explicitly represents the logical structure of a declarative program by unlabeled edges and operation nodes. In the deduction, the network first propagates symbolic tokens to create an expanded AND/OR network by the backward deduction, and then executes unification by a newly developed method to solve simultaneous equations buried in the network. The paper argues the soundness and completeness of the network in a conventional way, then explains how a kind of ambiguous solution is obtained by the new developed method. To examine the method's convergence property, numerical experiments are also conducted with some simple data-flow networks.