Characterization of optimal input distributions for Gaussian-mixture noise channels

Hung V. Vu, N. Tran, M. C. Gursoy, T. Le-Ngoc, S. I. Hariharan
{"title":"Characterization of optimal input distributions for Gaussian-mixture noise channels","authors":"Hung V. Vu, N. Tran, M. C. Gursoy, T. Le-Ngoc, S. I. Hariharan","doi":"10.1109/CWIT.2015.7255146","DOIUrl":null,"url":null,"abstract":"This paper addresses the characterization of optimal input distributions for the general additive quadrature Gaussian-mixture (GM) noise channel under an average power constraint. The considered model can be used to represent a wide variety of communication channels, such as the well-known Bernoulli-Gaussian and Middleton Class-A impulsive noise channels, co-channel interference in cellular communications, and cognitive radio channels under imperfect spectrum sensing. We first demonstrate that there exists a unique input distribution achieving the channel capacity and the optimal input has an uniformly distributed phase. By using the Kuhn-Tucker conditions (KTC) and Bernstein's theorem, we then demonstrate that there are always a finite number of mass points on any bounded interval in the optimal amplitude distribution. Equivalently, the optimal amplitude input distribution is discrete. Furthermore, by applying a novel bounding technique on the KTC, it is then shown that the optimal amplitude distribution has a finite number of mass points.","PeriodicalId":426245,"journal":{"name":"2015 IEEE 14th Canadian Workshop on Information Theory (CWIT)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th Canadian Workshop on Information Theory (CWIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CWIT.2015.7255146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the characterization of optimal input distributions for the general additive quadrature Gaussian-mixture (GM) noise channel under an average power constraint. The considered model can be used to represent a wide variety of communication channels, such as the well-known Bernoulli-Gaussian and Middleton Class-A impulsive noise channels, co-channel interference in cellular communications, and cognitive radio channels under imperfect spectrum sensing. We first demonstrate that there exists a unique input distribution achieving the channel capacity and the optimal input has an uniformly distributed phase. By using the Kuhn-Tucker conditions (KTC) and Bernstein's theorem, we then demonstrate that there are always a finite number of mass points on any bounded interval in the optimal amplitude distribution. Equivalently, the optimal amplitude input distribution is discrete. Furthermore, by applying a novel bounding technique on the KTC, it is then shown that the optimal amplitude distribution has a finite number of mass points.
高斯混合噪声信道最优输入分布的表征
研究了在平均功率约束下一般加性正交高斯混合(GM)噪声信道的最优输入分布特性。所考虑的模型可用于表示各种通信信道,例如众所周知的伯努利-高斯和米德尔顿a类脉冲噪声信道,蜂窝通信中的同信道干扰,以及不完全频谱感知下的认知无线电信道。我们首先证明了存在一个唯一的输入分布来实现信道容量,并且最优输入具有均匀分布的相位。利用库恩-塔克条件(KTC)和伯恩斯坦定理,我们证明了在最优振幅分布的任何有界区间上总是存在有限数量的质量点。同样,最优振幅输入分布是离散的。此外,通过在KTC上应用一种新的边界技术,证明了最优振幅分布具有有限数量的质量点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信