Improving Computational Efficiency of Communication for Omniscience and Successive Omniscience

Ni Ding, P. Sadeghi, T. Rakotoarivelo
{"title":"Improving Computational Efficiency of Communication for Omniscience and Successive Omniscience","authors":"Ni Ding, P. Sadeghi, T. Rakotoarivelo","doi":"10.1109/ALLERTON.2018.8636087","DOIUrl":null,"url":null,"abstract":"For a group of users in V where everyone observes a component of a discrete multiple random source, the process that users exchange data so as to reach omniscience, the state where everyone recovers the entire source, is called communication for omniscience (CO). We first consider how to improve the existing complexity $O(|V|^{2} \\mathrm{S}\\mathrm{F} \\mathrm{M}(|V|)$ of minimizing the sum of communication rates in CO, where $\\mathrm{S}\\mathrm{F} \\mathrm{M}(|V|)$ denotes the complexity of minimizing a submodular function. We reveal some structured property in an existing coordinate saturation algorithm: the resulting rate vector and the corresponding partition of V are segmented in $\\alpha$, the estimation of the minimum sum-rate. A parametric (PAR) algorithm is then proposed where, instead of a particular $\\alpha$, we search the critical points that fully determine the segmented variables for all $\\alpha$ so that they converge to the solution to the minimum sum-rate problem and the overall complexity reduces to $O(|V|\\cdot \\mathrm{S}\\mathrm{F} \\mathrm{M}(|V|))$.For the successive omniscience (SO), we consider how to attain local omniscience in some complimentary user subset so that the overall sum-rate for the global omniscience still remains minimum. While the existing algorithm only determines a complimentary user subset in $O (|V|\\ \\mathrm{S}\\mathrm{F} \\mathrm{M}(|V|))$ time, we show that, if a lower bound on the minimum sum-rate is applied to the segmented variables in the PAR algorithm, not only a complimentary subset, but also an optimal rate vector for attaining the local omniscience in it are returned in $O(|V|\\cdot \\mathrm{S}\\mathrm{F} \\mathrm{M}(|V|))$ time.","PeriodicalId":299280,"journal":{"name":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2018.8636087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

For a group of users in V where everyone observes a component of a discrete multiple random source, the process that users exchange data so as to reach omniscience, the state where everyone recovers the entire source, is called communication for omniscience (CO). We first consider how to improve the existing complexity $O(|V|^{2} \mathrm{S}\mathrm{F} \mathrm{M}(|V|)$ of minimizing the sum of communication rates in CO, where $\mathrm{S}\mathrm{F} \mathrm{M}(|V|)$ denotes the complexity of minimizing a submodular function. We reveal some structured property in an existing coordinate saturation algorithm: the resulting rate vector and the corresponding partition of V are segmented in $\alpha$, the estimation of the minimum sum-rate. A parametric (PAR) algorithm is then proposed where, instead of a particular $\alpha$, we search the critical points that fully determine the segmented variables for all $\alpha$ so that they converge to the solution to the minimum sum-rate problem and the overall complexity reduces to $O(|V|\cdot \mathrm{S}\mathrm{F} \mathrm{M}(|V|))$.For the successive omniscience (SO), we consider how to attain local omniscience in some complimentary user subset so that the overall sum-rate for the global omniscience still remains minimum. While the existing algorithm only determines a complimentary user subset in $O (|V|\ \mathrm{S}\mathrm{F} \mathrm{M}(|V|))$ time, we show that, if a lower bound on the minimum sum-rate is applied to the segmented variables in the PAR algorithm, not only a complimentary subset, but also an optimal rate vector for attaining the local omniscience in it are returned in $O(|V|\cdot \mathrm{S}\mathrm{F} \mathrm{M}(|V|))$ time.
提高全知和连续全知通信的计算效率
对于V中的一组用户,每个人都观察到离散的多个随机源的一个分量,用户交换数据以达到全知的过程,即每个人都恢复整个源的状态,称为全知通信(communication For omniscience, CO)。我们首先考虑如何改进现有的最小化CO通信速率和的复杂度$O(|V|^{2} \mathrm{S}\mathrm{F} \mathrm{M}(|V|)$,其中$\mathrm{S}\mathrm{M}(|V|)$表示最小化子模函数的复杂度。我们揭示了现有的一种坐标饱和算法的一些结构化性质:得到的速率向量和相应的V分割在最小和速率估计$\alpha$中被分割。然后提出了一种参数化(PAR)算法,该算法不使用特定的$\alpha$,而是对所有$\alpha$搜索完全确定分段变量的临界点,使它们收敛于最小和率问题的解,使整体复杂度降低到$O(|V|\cdot \ mathm {S}\ mathm {F} \ mathm {M}(|V|))$。对于连续全知,我们考虑如何在某些互补的用户子集中实现局部全知,从而使全局全知的总求和速率保持最小。虽然现有算法仅在$O(|V|\ \mathrm{S}\mathrm{F} \mathrm{M}(|V|))$ time中确定一个互补用户子集,但我们证明,如果对PAR算法中的分段变量应用最小和速率的下界,则在$O(|V|\cdot \mathrm{S}\mathrm{F} \mathrm{M}(|V|))$ time中不仅返回一个互补子集,而且还返回一个用于实现其局部全知的最优速率向量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信