Recognizing daily-life activities using sensor-collected data in a kitchen

Ismael Gutierrez, Diego Naranjo, Isaac Tretta, Luis Valverde, Juan José Vargas, Gabriela Barrantes, Luis Quesada, Adrián Lara
{"title":"Recognizing daily-life activities using sensor-collected data in a kitchen","authors":"Ismael Gutierrez, Diego Naranjo, Isaac Tretta, Luis Valverde, Juan José Vargas, Gabriela Barrantes, Luis Quesada, Adrián Lara","doi":"10.1109/jocici54528.2021.9794350","DOIUrl":null,"url":null,"abstract":"This paper focuses on the recognition and classification of Activities of Daily Living (ADLs) that are carried out in a kitchen. To do this, a Recurrent Neural Network architecture of the Long-Short Term Memory (LSTM) type is implemented as a classifier. The ARAS dataset is used for training and evaluation. A classifier is obtained with an average value in the F1 metric of 95.33% for the chosen data set","PeriodicalId":339143,"journal":{"name":"2021 IEEE V Jornadas Costarricenses de Investigación en Computación e Informática (JoCICI)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE V Jornadas Costarricenses de Investigación en Computación e Informática (JoCICI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/jocici54528.2021.9794350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the recognition and classification of Activities of Daily Living (ADLs) that are carried out in a kitchen. To do this, a Recurrent Neural Network architecture of the Long-Short Term Memory (LSTM) type is implemented as a classifier. The ARAS dataset is used for training and evaluation. A classifier is obtained with an average value in the F1 metric of 95.33% for the chosen data set
利用传感器在厨房收集的数据来识别日常生活活动
本文的重点是对日常生活活动(ADLs)在厨房进行的识别和分类。为此,将长短期记忆(LSTM)类型的递归神经网络架构实现为分类器。ARAS数据集用于训练和评估。对于所选数据集,得到的分类器在F1度量中的平均值为95.33%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信