Adaptive control of distillation column using adaptive critic design

P. Koprinkova-Hristova, Y. Todorov, N. Paraschiv, M. Olteanu, M. Terziyska
{"title":"Adaptive control of distillation column using adaptive critic design","authors":"P. Koprinkova-Hristova, Y. Todorov, N. Paraschiv, M. Olteanu, M. Terziyska","doi":"10.1109/PC.2017.7976253","DOIUrl":null,"url":null,"abstract":"The paper aims at synthesis of an adaptive controller of the distillate output flow rate of a binary distillation column. The disturbance of the process is the change of concentration of the inlet compound. The Adaptive Critic Design (ACD) approach was applied to predict on time the future effect of disturbance and to adapt the distillate output flow rate in order to prevent deviations from the desired distillate concentration. The key element of ACD — the critic — is a fast trainable recurrent neural network named Echo state network (ESN). The simulation investigations demonstrated that the proposed adaptive control scheme outperforms a classical non-adaptive controller with respect to the settling time and the reaction delay.","PeriodicalId":377619,"journal":{"name":"2017 21st International Conference on Process Control (PC)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 21st International Conference on Process Control (PC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PC.2017.7976253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The paper aims at synthesis of an adaptive controller of the distillate output flow rate of a binary distillation column. The disturbance of the process is the change of concentration of the inlet compound. The Adaptive Critic Design (ACD) approach was applied to predict on time the future effect of disturbance and to adapt the distillate output flow rate in order to prevent deviations from the desired distillate concentration. The key element of ACD — the critic — is a fast trainable recurrent neural network named Echo state network (ESN). The simulation investigations demonstrated that the proposed adaptive control scheme outperforms a classical non-adaptive controller with respect to the settling time and the reaction delay.
采用自适应临界设计的精馏塔自适应控制
本文的目的是合成一种二元精馏塔馏分输出流量的自适应控制器。该过程的扰动是入口化合物浓度的变化。应用自适应评价设计(ACD)方法及时预测扰动的未来影响,并调整馏出液输出流量,以防止偏离期望的馏出液浓度。回声状态网络(ESN)是一种快速可训练的递归神经网络。仿真研究表明,所提出的自适应控制方案在稳定时间和反应延迟方面优于经典的非自适应控制器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信