{"title":"Distributed electric field approximation","authors":"D. Trybus, Z. Kucerovsky, A. Ieta, T. Doyle","doi":"10.1109/HPCSA.2002.1019167","DOIUrl":null,"url":null,"abstract":"Grid or mesh techniques are frequently used to approximate continuous entities that behave in a wave or fluid-like fashion. Partial Differential Equations (PDEs) are usually involved in the description of such entities or processes. Distributed parallel computation was used in various computer cluster configurations to calculate PDE solutions of electrostatic field. The study of the efficacy of the selected architecture using mesh techniques was intended. The match between the algorithm and the architecture in achieving maximum computational performance was also investigated. The developed architectures, algorithms, and findings are presented in the paper.","PeriodicalId":111862,"journal":{"name":"Proceedings 16th Annual International Symposium on High Performance Computing Systems and Applications","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 16th Annual International Symposium on High Performance Computing Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCSA.2002.1019167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Grid or mesh techniques are frequently used to approximate continuous entities that behave in a wave or fluid-like fashion. Partial Differential Equations (PDEs) are usually involved in the description of such entities or processes. Distributed parallel computation was used in various computer cluster configurations to calculate PDE solutions of electrostatic field. The study of the efficacy of the selected architecture using mesh techniques was intended. The match between the algorithm and the architecture in achieving maximum computational performance was also investigated. The developed architectures, algorithms, and findings are presented in the paper.