Clustering Methods in Game Data Science

M. S. El-Nasr, Truong Huy Nguyen Dinh, Alessandro Canossa, Anders Drachen
{"title":"Clustering Methods in Game Data Science","authors":"M. S. El-Nasr, Truong Huy Nguyen Dinh, Alessandro Canossa, Anders Drachen","doi":"10.1093/oso/9780192897879.003.0006","DOIUrl":null,"url":null,"abstract":"This chapter discusses different clustering methods and their application to game data. In particular, the chapter details K-means, Fuzzy C-Means, Hierarchical Clustering, Archetypical Analysis, and Model-based clustering techniques. It discusses the disadvantages and advantages of the different methods and discusses when you may use one method vs. the other. It also identifies and shows you ways to visualize the results to make sense of the resulting clusters. It also includes details on how one would evaluate such clusters or go about applying the algorithms to a game dataset. The chapter includes labs to delve deeper into the application of these algorithms on real game data.","PeriodicalId":137223,"journal":{"name":"Game Data Science","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Game Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780192897879.003.0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter discusses different clustering methods and their application to game data. In particular, the chapter details K-means, Fuzzy C-Means, Hierarchical Clustering, Archetypical Analysis, and Model-based clustering techniques. It discusses the disadvantages and advantages of the different methods and discusses when you may use one method vs. the other. It also identifies and shows you ways to visualize the results to make sense of the resulting clusters. It also includes details on how one would evaluate such clusters or go about applying the algorithms to a game dataset. The chapter includes labs to delve deeper into the application of these algorithms on real game data.
游戏数据科学中的聚类方法
本章讨论了不同的聚类方法及其在游戏数据中的应用。特别是,本章详细介绍了K-means、模糊C-Means、分层聚类、原型分析和基于模型的聚类技术。它讨论了不同方法的缺点和优点,并讨论了何时可以使用一种方法而不是另一种方法。它还标识并展示了可视化结果的方法,以理解所得到的集群。它还包括如何评估这些集群或如何将算法应用于游戏数据集的细节。本章包括实验室,深入研究这些算法在真实游戏数据上的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信