ADAPTIVE SEQUENTIAL SAMPLING FOR POLYNOMIAL CHAOS EXPANSION

L. Novák, M. Vořechovský, Václav Sadílek
{"title":"ADAPTIVE SEQUENTIAL SAMPLING FOR POLYNOMIAL CHAOS EXPANSION","authors":"L. Novák, M. Vořechovský, Václav Sadílek","doi":"10.7712/120221.8038.18955","DOIUrl":null,"url":null,"abstract":". The paper presents a sampling strategy created specifically for surrogate modeling via polynomial chaos expansion. The proposed method combines adaptivity of surrogate model and sequential sampling enabling one-by-one extension of an experimental design. The iteration process of sequential sampling selects from a large pool of candidate points by trying to cover the design domain proportionally to their local variance contribution. The criterion for the sample selection balances between exploitation of the surrogate model and exploration of the design domain. The obtained numerical results confirm its superiority over standard non-sequential approaches in terms of surrogate model accuracy and estimation of the output variance.","PeriodicalId":444608,"journal":{"name":"4th International Conference on Uncertainty Quantification in Computational Sciences and Engineering","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th International Conference on Uncertainty Quantification in Computational Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7712/120221.8038.18955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. The paper presents a sampling strategy created specifically for surrogate modeling via polynomial chaos expansion. The proposed method combines adaptivity of surrogate model and sequential sampling enabling one-by-one extension of an experimental design. The iteration process of sequential sampling selects from a large pool of candidate points by trying to cover the design domain proportionally to their local variance contribution. The criterion for the sample selection balances between exploitation of the surrogate model and exploration of the design domain. The obtained numerical results confirm its superiority over standard non-sequential approaches in terms of surrogate model accuracy and estimation of the output variance.
多项式混沌展开的自适应顺序采样
. 本文提出了一种基于多项式混沌展开的代理模型的采样策略。该方法结合了代理模型的自适应性和顺序采样,实现了实验设计的逐次扩展。顺序抽样的迭代过程通过尝试按局部方差贡献的比例覆盖设计域,从大量候选点中进行选择。样本选择的标准是在利用代理模型和探索设计领域之间取得平衡。数值结果证实了该方法在代理模型精度和输出方差估计方面优于标准非顺序方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信