Numerical Simulation of Band Propagation in Nonlinear Chromatography

P. Rouchon, M. Schonauer, P. Valentin, G. Guiochon
{"title":"Numerical Simulation of Band Propagation in Nonlinear Chromatography","authors":"P. Rouchon, M. Schonauer, P. Valentin, G. Guiochon","doi":"10.1080/01496398708057614","DOIUrl":null,"url":null,"abstract":"Abstract A model for the propagation of a finite concentration zone in a chroma-tographic column is discussed for the case of a single component sample. This model is based on the modern theory of nonlinear hyperbolic systems of partial differential equations. It accounts for the nonlinear effects due 1) to the thermodynamics of solute-stationary phase equilibrium (i.e., the nonlinearity of the equilibrium isotherm), 2) to the interaction between radial mass transfer and flow velocity (the sorption effect in gas chromatography), and 3) to the pressure gradient along the column (in gas chromatography). Numerical results are obtained by using the Godunov method. The column is divided into a large","PeriodicalId":184327,"journal":{"name":"Preparative-Scale Chromatography","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative-Scale Chromatography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01496398708057614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78

Abstract

Abstract A model for the propagation of a finite concentration zone in a chroma-tographic column is discussed for the case of a single component sample. This model is based on the modern theory of nonlinear hyperbolic systems of partial differential equations. It accounts for the nonlinear effects due 1) to the thermodynamics of solute-stationary phase equilibrium (i.e., the nonlinearity of the equilibrium isotherm), 2) to the interaction between radial mass transfer and flow velocity (the sorption effect in gas chromatography), and 3) to the pressure gradient along the column (in gas chromatography). Numerical results are obtained by using the Godunov method. The column is divided into a large
非线性色谱中波段传播的数值模拟
摘要讨论了单组分色谱柱中有限浓度区传播的模型。该模型是基于非线性双曲型偏微分方程组的现代理论。它考虑了以下几种非线性效应:(1)溶质-固定相平衡热力学(即平衡等温线的非线性),(2)径向传质与流速之间的相互作用(气相色谱中的吸附效应),(3)沿柱压力梯度(气相色谱)。采用Godunov方法得到了数值结果。柱子被分成了一个大的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信