Fast solvers for nonsmooth optimization problems in phase separation

Pawan Kumar
{"title":"Fast solvers for nonsmooth optimization problems in phase separation","authors":"Pawan Kumar","doi":"10.15439/2015F366","DOIUrl":null,"url":null,"abstract":"The phase separation processes are typically modeled by well known Cahn-Hilliard equation with obstacle potential. Solving these equations correspond to a nonsmooth and nonlinear optimization problem. Recently a globally convergent Newton Schur method was proposed for the non-linear Schur complement corresponding to this 2 × 2 non-linear system. The proposed method is similar to an inexact active set method in the sense that the active sets are first identified by solving a quadratic obstacle problem corresponding to the (1, 1) block of the 2 × 2 system, and later solving a reduced linear system by annihilating the rows and columns corresponding to identified active sets. For solving the quadratic obstacle problem, various optimal multi-grid like methods have been proposed. However solving the reduced system remains a major bottleneck. In this paper, we explore an effective preconditioner for the reduced linear system that allows solving large scale optimization problem corresponding to Cahn-Hilliard and to possibly similar models.","PeriodicalId":276884,"journal":{"name":"2015 Federated Conference on Computer Science and Information Systems (FedCSIS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Federated Conference on Computer Science and Information Systems (FedCSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15439/2015F366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The phase separation processes are typically modeled by well known Cahn-Hilliard equation with obstacle potential. Solving these equations correspond to a nonsmooth and nonlinear optimization problem. Recently a globally convergent Newton Schur method was proposed for the non-linear Schur complement corresponding to this 2 × 2 non-linear system. The proposed method is similar to an inexact active set method in the sense that the active sets are first identified by solving a quadratic obstacle problem corresponding to the (1, 1) block of the 2 × 2 system, and later solving a reduced linear system by annihilating the rows and columns corresponding to identified active sets. For solving the quadratic obstacle problem, various optimal multi-grid like methods have been proposed. However solving the reduced system remains a major bottleneck. In this paper, we explore an effective preconditioner for the reduced linear system that allows solving large scale optimization problem corresponding to Cahn-Hilliard and to possibly similar models.
相分离非光滑优化问题的快速求解方法
相分离过程的典型模型是具有障碍势的Cahn-Hilliard方程。求解这些方程对应于一个非光滑的非线性优化问题。最近,针对该2 × 2非线性系统的非线性Schur补,提出了一种全局收敛的Newton Schur方法。该方法类似于非精确活动集方法,首先通过求解2 × 2系统(1,1)块对应的二次障碍问题来识别活动集,然后通过消去识别活动集对应的行和列来求解简化线性系统。为了求解二次型障碍问题,人们提出了各种最优类多网格方法。然而,解决简化的系统仍然是一个主要的瓶颈。在本文中,我们探索了一个有效的简化线性系统的预条件,该预条件允许求解对应于Cahn-Hilliard和可能类似的模型的大规模优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信