{"title":"Hyperdoped Si thin films for infrared detection","authors":"J. Mathews","doi":"10.1117/12.2648363","DOIUrl":null,"url":null,"abstract":"Hyperdoped Si materials extend Si response range into near infrared by forming intermediate band in Si band gap. Ti hyperdoped Si (Si:Ti) has been demonstrated to have subbandgap photo response. In this work, we fabricated and characterized Si:Ti photodiodes and optimized the structure. At room temperature, the 3.5×10-3 EQE has been obtained at telecommunication wavelength 1550nm. And the detectable response extends until 2250nm. The results show the potential of Si:Ti materials being both Si:Ti photovoltaics and commercialized IR detection. To improve the efficiency of Si:Ti photodetectors, the affection of absorption rate, devices structure and the Si:Ti crystal quality is discussed.","PeriodicalId":380113,"journal":{"name":"International Workshop on Thin Films for Electronics, Electro-Optics, Energy and Sensors","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Thin Films for Electronics, Electro-Optics, Energy and Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2648363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Hyperdoped Si materials extend Si response range into near infrared by forming intermediate band in Si band gap. Ti hyperdoped Si (Si:Ti) has been demonstrated to have subbandgap photo response. In this work, we fabricated and characterized Si:Ti photodiodes and optimized the structure. At room temperature, the 3.5×10-3 EQE has been obtained at telecommunication wavelength 1550nm. And the detectable response extends until 2250nm. The results show the potential of Si:Ti materials being both Si:Ti photovoltaics and commercialized IR detection. To improve the efficiency of Si:Ti photodetectors, the affection of absorption rate, devices structure and the Si:Ti crystal quality is discussed.