Prototype of a multi-platform remote sensing service for fishing forecasting

K. Tijani, A. Morea, M. Chiaradia, R. Nutricato, L. Guerriero
{"title":"Prototype of a multi-platform remote sensing service for fishing forecasting","authors":"K. Tijani, A. Morea, M. Chiaradia, R. Nutricato, L. Guerriero","doi":"10.1109/EESMS.2016.7504846","DOIUrl":null,"url":null,"abstract":"The present work concerns the development of an automatic Fishing Forecasting System (FiFoS) where satellite observations, ancillary data and in situ measurements (Catch Per Unit Effort) are used to set up, calibrate and validate a fishing forecasting model. Multi-temporal and multi-sensor data fusion techniques are applied to multi-spectral data in order to detect chlorophyll and sea temperature fronts that according to physical models of the upwelling phenomena are related to areas rich of phytoplankton nutrients where a high concentration of pelagic fish is expected.","PeriodicalId":262720,"journal":{"name":"2016 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EESMS.2016.7504846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present work concerns the development of an automatic Fishing Forecasting System (FiFoS) where satellite observations, ancillary data and in situ measurements (Catch Per Unit Effort) are used to set up, calibrate and validate a fishing forecasting model. Multi-temporal and multi-sensor data fusion techniques are applied to multi-spectral data in order to detect chlorophyll and sea temperature fronts that according to physical models of the upwelling phenomena are related to areas rich of phytoplankton nutrients where a high concentration of pelagic fish is expected.
渔业预报多平台遥感服务原型
目前的工作是发展一个自动捕鱼预报系统,利用卫星观测、辅助数据和现场测量(单位努力渔获量)来建立、校准和验证一个捕鱼预报模型。根据上升流现象的物理模型,将多时间和多传感器数据融合技术应用于多光谱数据中,以检测叶绿素和海温锋,这些海温锋与浮游植物营养物质丰富的区域有关,而这些区域预计会有高浓度的远洋鱼类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信