Robust battery fuel gauge algorithm development, part 2: Online battery-capacity estimation

B. Balasingam, G. V. Avvari, B. Pattipati, K. Pattipati, Y. Bar-Shalom
{"title":"Robust battery fuel gauge algorithm development, part 2: Online battery-capacity estimation","authors":"B. Balasingam, G. V. Avvari, B. Pattipati, K. Pattipati, Y. Bar-Shalom","doi":"10.1109/ICRERA.2014.7016539","DOIUrl":null,"url":null,"abstract":"In this paper we present an approach for robust, real time capacity estimation in Li-ion batteries. The proposed capacity estimation scheme has the following novel features: it employes total least squares (TLS) estimation in order to account for uncertainties in both model and the observations in capacity estimation. The TLS method can adaptively track changes in battery capacity. We propose a second approach to estimate battery capacity by exploiting rest states in the battery. This approach is devised to minimize the effect of hysteresis in capacity estimation. Finally, we propose a novel approach for optimally fusing capacity estimates obtained through different methods. We demonstrate the performance of the algorithm through objective experiments.","PeriodicalId":243870,"journal":{"name":"2014 International Conference on Renewable Energy Research and Application (ICRERA)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Renewable Energy Research and Application (ICRERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRERA.2014.7016539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper we present an approach for robust, real time capacity estimation in Li-ion batteries. The proposed capacity estimation scheme has the following novel features: it employes total least squares (TLS) estimation in order to account for uncertainties in both model and the observations in capacity estimation. The TLS method can adaptively track changes in battery capacity. We propose a second approach to estimate battery capacity by exploiting rest states in the battery. This approach is devised to minimize the effect of hysteresis in capacity estimation. Finally, we propose a novel approach for optimally fusing capacity estimates obtained through different methods. We demonstrate the performance of the algorithm through objective experiments.
鲁棒电池燃料测量算法开发,第2部分:在线电池容量估计
在本文中,我们提出了一种对锂离子电池进行鲁棒实时容量估计的方法。提出的容量估计方案具有以下特点:在容量估计中,采用了总最小二乘(TLS)估计,以兼顾模型和观测值的不确定性;TLS方法可以自适应跟踪电池容量的变化。我们提出了第二种通过利用电池的休息状态来估计电池容量的方法。设计这种方法是为了尽量减少容量估计中迟滞的影响。最后,我们提出了一种新的方法来最优融合通过不同方法得到的容量估计。通过客观实验验证了该算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信