M. Ezzadeen, A. Majumdar, Sigrid Thomas, J. Noël, B. Giraud, M. Bocquet, F. Andrieu, D. Querlioz, J. Portal
{"title":"Binary ReRAM-based BNN first-layer implementation","authors":"M. Ezzadeen, A. Majumdar, Sigrid Thomas, J. Noël, B. Giraud, M. Bocquet, F. Andrieu, D. Querlioz, J. Portal","doi":"10.23919/DATE56975.2023.10137057","DOIUrl":null,"url":null,"abstract":"The deployment of Edge AI requires energy-efficient hardware with a minimal memory footprint to achieve optimal performance. One approach to meet this challenge is the use of Binary Neural Networks (BNNs) based on non-volatile in-memory computing (IMC). In recent years, elegant ReRAM-based IMC solutions for BNNs have been developed, but they do not extend to the first layer of a BNN, which typically requires non-binary activations. In this paper, we propose a modified first layer architecture for BNNs that uses k-bit input images broken down into k binary input images with associated fully binary convolution layers and an accumulation layer with fixed weights of $2^{-1}, \\ldots, 2^{-k}$. To further increase energy efficiency, we also propose reducing the number of operations by truncating 8-bit RGB pixel code to the 4 most significant bits (MSB). Our proposed architecture only reduces network accuracy by 0.28% on the CIFAR-10 task compared to a BNN baseline. Additionally, we propose a cost-effective solution to implement the weighted accumulation using successive charge sharing operations on an existing ReRAM-based IMC solution. This solution is validated through functional electrical simulations.","PeriodicalId":340349,"journal":{"name":"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE56975.2023.10137057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The deployment of Edge AI requires energy-efficient hardware with a minimal memory footprint to achieve optimal performance. One approach to meet this challenge is the use of Binary Neural Networks (BNNs) based on non-volatile in-memory computing (IMC). In recent years, elegant ReRAM-based IMC solutions for BNNs have been developed, but they do not extend to the first layer of a BNN, which typically requires non-binary activations. In this paper, we propose a modified first layer architecture for BNNs that uses k-bit input images broken down into k binary input images with associated fully binary convolution layers and an accumulation layer with fixed weights of $2^{-1}, \ldots, 2^{-k}$. To further increase energy efficiency, we also propose reducing the number of operations by truncating 8-bit RGB pixel code to the 4 most significant bits (MSB). Our proposed architecture only reduces network accuracy by 0.28% on the CIFAR-10 task compared to a BNN baseline. Additionally, we propose a cost-effective solution to implement the weighted accumulation using successive charge sharing operations on an existing ReRAM-based IMC solution. This solution is validated through functional electrical simulations.