Least-squares learning control with guaranteed parameter convergence

Yongping Pan, Xiang Li, Haoyong Yu
{"title":"Least-squares learning control with guaranteed parameter convergence","authors":"Yongping Pan, Xiang Li, Haoyong Yu","doi":"10.1109/IConAC.2016.7604907","DOIUrl":null,"url":null,"abstract":"Parameter convergence is of great importance as it enhances the overall stability and robustness properties of adaptive control systems. However, a stringent persistent-excitation (PE) condition usually has to be satisfied to achieve parameter convergence in adaptive control. In this paper, a least-squares learning control strategy without regressor filtering is presented to achieve parameter convergence at the absence of the PE condition. An additional modified modeling error that utilizes online recorded data is constructed to update parametric estimates, and an integral transformation is derived to avoid the time differentiation of plant states in the computation of the modified modeling error. An indirect adaptive control law equipped with a novel filtering-free least-squares estimation is proposed to guarantee exponential convergence of both tracking errors and parameter estimation errors by an interval-excitation (IE) condition which is much weaker than the PE condition. An illustrative example has verified effectiveness of the proposed approach.","PeriodicalId":375052,"journal":{"name":"2016 22nd International Conference on Automation and Computing (ICAC)","volume":"11 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 22nd International Conference on Automation and Computing (ICAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IConAC.2016.7604907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Parameter convergence is of great importance as it enhances the overall stability and robustness properties of adaptive control systems. However, a stringent persistent-excitation (PE) condition usually has to be satisfied to achieve parameter convergence in adaptive control. In this paper, a least-squares learning control strategy without regressor filtering is presented to achieve parameter convergence at the absence of the PE condition. An additional modified modeling error that utilizes online recorded data is constructed to update parametric estimates, and an integral transformation is derived to avoid the time differentiation of plant states in the computation of the modified modeling error. An indirect adaptive control law equipped with a novel filtering-free least-squares estimation is proposed to guarantee exponential convergence of both tracking errors and parameter estimation errors by an interval-excitation (IE) condition which is much weaker than the PE condition. An illustrative example has verified effectiveness of the proposed approach.
保证参数收敛的最小二乘学习控制
参数收敛对于提高自适应控制系统的整体稳定性和鲁棒性具有重要意义。然而,在自适应控制中,通常需要满足严格的持续激励(PE)条件才能实现参数收敛。本文提出了一种不带回归量滤波的最小二乘学习控制策略,以实现无PE条件下的参数收敛。利用在线记录数据构造了一个修正模型误差来更新参数估计,并推导了一个积分变换来避免修正模型误差计算中植物状态的时间差。提出了一种新的无滤波最小二乘估计的间接自适应控制律,通过较PE条件弱得多的区间激励(IE)条件保证跟踪误差和参数估计误差的指数收敛。通过实例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信