Hyperspectral image supervised classification via multi-view nuclear norm based 2D PCA feature extraction and kernel ELM

Jue Jiang, Lili Huang, Heng Li, Liang Xiao
{"title":"Hyperspectral image supervised classification via multi-view nuclear norm based 2D PCA feature extraction and kernel ELM","authors":"Jue Jiang, Lili Huang, Heng Li, Liang Xiao","doi":"10.1109/IGARSS.2016.7729382","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel flexible framework for hyperspectral image (HSI) classification using multi-view spectral-spatial feature extracted by nuclear norm based 2D PCA. We first use the multihyphonthesis (MH) prediction method based on ridge regression to generate the 3D spatial-feature array from the HSI. Then, we apply the nuclear norm based 2D PCA to multi-view slices (the image with the spatial width and spectral dimension or with the spatial height and spectral dimension) of the former feature array, which can provide a structured spatial-spectral characterization for the reconstruction error slice and further extract the spatial-spectral feature. Finally, the 3D spatial-spectral feature array is used to represent the HSI for classification by extreme learning machine (ELM) based on Radial Basis Function (RBF) kernal. Finally, majority voting procedure is used to further improve the classification accuracy. The efficiency of the proposed method is demonstrated by experimental results with real hyperspectral dataset.","PeriodicalId":179622,"journal":{"name":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2016.7729382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, we propose a novel flexible framework for hyperspectral image (HSI) classification using multi-view spectral-spatial feature extracted by nuclear norm based 2D PCA. We first use the multihyphonthesis (MH) prediction method based on ridge regression to generate the 3D spatial-feature array from the HSI. Then, we apply the nuclear norm based 2D PCA to multi-view slices (the image with the spatial width and spectral dimension or with the spatial height and spectral dimension) of the former feature array, which can provide a structured spatial-spectral characterization for the reconstruction error slice and further extract the spatial-spectral feature. Finally, the 3D spatial-spectral feature array is used to represent the HSI for classification by extreme learning machine (ELM) based on Radial Basis Function (RBF) kernal. Finally, majority voting procedure is used to further improve the classification accuracy. The efficiency of the proposed method is demonstrated by experimental results with real hyperspectral dataset.
基于多视点核范数的二维PCA特征提取和核ELM的高光谱图像监督分类
本文提出了一种基于核范数二维主成分分析提取多视点光谱空间特征的高光谱图像分类框架。我们首先使用基于脊回归的多假设(MH)预测方法从HSI生成三维空间特征阵列。然后,将基于核范数的二维主成分分析应用于前一特征阵列的多视图切片(具有空间宽度和光谱维数的图像或具有空间高度和光谱维数的图像),可以为重构误差切片提供结构化的空间光谱表征,并进一步提取空间光谱特征。最后,采用基于径向基函数(RBF)核的极限学习机(ELM)对HSI进行分类,利用三维空间光谱特征阵列表示HSI。最后,采用多数投票程序进一步提高分类精度。实际高光谱数据集的实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信