{"title":"Drowsiness Detection for Office-based Workload with Mouse and Keyboard Data","authors":"Sanurak Natnithikarat, Sirakorn Lamyai, Pitshaporn Leelaarporn, Narin Kunaseth, Phairot Autthasan, Thayakorn Wisutthisen, Theerawit Wilaiprasitporn","doi":"10.1109/BMEiCON47515.2019.8990236","DOIUrl":null,"url":null,"abstract":"Non-invasive devices involved in the detection of drowsiness generally include infrared camera and Electroencephalography (EEG), of which sometimes are constrained in an actual real-life scenario deployments and implementations such as in the working office environment. This study proposes a combination using the biometric features of keyboard and mouse movements and eye tracking during an office-based tasks to detect and evaluate drowsiness according to the self-report Karolinska sleepiness scale (KSS) questionnaire. Using machine learning models, the results demonstrate a correlation between the predicted KSS from the biometrics and the actual KSS from the user input, indicating the feasibility of evaluating the office workers’ drowsiness level of the proposed approach.","PeriodicalId":213939,"journal":{"name":"2019 12th Biomedical Engineering International Conference (BMEiCON)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 12th Biomedical Engineering International Conference (BMEiCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEiCON47515.2019.8990236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Non-invasive devices involved in the detection of drowsiness generally include infrared camera and Electroencephalography (EEG), of which sometimes are constrained in an actual real-life scenario deployments and implementations such as in the working office environment. This study proposes a combination using the biometric features of keyboard and mouse movements and eye tracking during an office-based tasks to detect and evaluate drowsiness according to the self-report Karolinska sleepiness scale (KSS) questionnaire. Using machine learning models, the results demonstrate a correlation between the predicted KSS from the biometrics and the actual KSS from the user input, indicating the feasibility of evaluating the office workers’ drowsiness level of the proposed approach.