Drowsiness Detection for Office-based Workload with Mouse and Keyboard Data

Sanurak Natnithikarat, Sirakorn Lamyai, Pitshaporn Leelaarporn, Narin Kunaseth, Phairot Autthasan, Thayakorn Wisutthisen, Theerawit Wilaiprasitporn
{"title":"Drowsiness Detection for Office-based Workload with Mouse and Keyboard Data","authors":"Sanurak Natnithikarat, Sirakorn Lamyai, Pitshaporn Leelaarporn, Narin Kunaseth, Phairot Autthasan, Thayakorn Wisutthisen, Theerawit Wilaiprasitporn","doi":"10.1109/BMEiCON47515.2019.8990236","DOIUrl":null,"url":null,"abstract":"Non-invasive devices involved in the detection of drowsiness generally include infrared camera and Electroencephalography (EEG), of which sometimes are constrained in an actual real-life scenario deployments and implementations such as in the working office environment. This study proposes a combination using the biometric features of keyboard and mouse movements and eye tracking during an office-based tasks to detect and evaluate drowsiness according to the self-report Karolinska sleepiness scale (KSS) questionnaire. Using machine learning models, the results demonstrate a correlation between the predicted KSS from the biometrics and the actual KSS from the user input, indicating the feasibility of evaluating the office workers’ drowsiness level of the proposed approach.","PeriodicalId":213939,"journal":{"name":"2019 12th Biomedical Engineering International Conference (BMEiCON)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 12th Biomedical Engineering International Conference (BMEiCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEiCON47515.2019.8990236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Non-invasive devices involved in the detection of drowsiness generally include infrared camera and Electroencephalography (EEG), of which sometimes are constrained in an actual real-life scenario deployments and implementations such as in the working office environment. This study proposes a combination using the biometric features of keyboard and mouse movements and eye tracking during an office-based tasks to detect and evaluate drowsiness according to the self-report Karolinska sleepiness scale (KSS) questionnaire. Using machine learning models, the results demonstrate a correlation between the predicted KSS from the biometrics and the actual KSS from the user input, indicating the feasibility of evaluating the office workers’ drowsiness level of the proposed approach.
睡意检测办公室工作负载与鼠标和键盘数据
用于检测睡意的非侵入性设备通常包括红外摄像机和脑电图(EEG),它们有时在实际生活场景的部署和实现中受到限制,例如在办公环境中。本研究提出了一种结合使用键盘和鼠标运动的生物特征和眼动追踪的方法,根据自我报告的卡罗林斯卡嗜睡量表(KSS)问卷来检测和评估睡意。使用机器学习模型,结果证明了生物识别技术预测的KSS与用户输入的实际KSS之间的相关性,表明了评估办公室工作人员困倦程度的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信