Asymptotic Robustness Coefficient for Signal Detection Algorithms

N. S. Khailo, A. G. Vostretsov
{"title":"Asymptotic Robustness Coefficient for Signal Detection Algorithms","authors":"N. S. Khailo, A. G. Vostretsov","doi":"10.1109/APEIE.2018.8545734","DOIUrl":null,"url":null,"abstract":"Both the form of the noise distribution and a number of signal and interference parameters can be a priori uncertain in many practical cases of signal detection. Therefore, the ability to maintain detection algorithm performance in the case of noise environment changing is one of the key problems. In the most cases at the stage of synthesis, it is not possible to ensure the independence of the average losses of an algorithm on the noise distribution, which makes it necessary to estimate the stability of the average losses of algorithms in the case of nonparametric a priori uncertainty. This property is usually called robustness. In this paper, we propose the asymptotic robustness coefficient which can be used for estimating the robustness of signal detection algorithms.","PeriodicalId":147830,"journal":{"name":"2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE)","volume":"4 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEIE.2018.8545734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Both the form of the noise distribution and a number of signal and interference parameters can be a priori uncertain in many practical cases of signal detection. Therefore, the ability to maintain detection algorithm performance in the case of noise environment changing is one of the key problems. In the most cases at the stage of synthesis, it is not possible to ensure the independence of the average losses of an algorithm on the noise distribution, which makes it necessary to estimate the stability of the average losses of algorithms in the case of nonparametric a priori uncertainty. This property is usually called robustness. In this paper, we propose the asymptotic robustness coefficient which can be used for estimating the robustness of signal detection algorithms.
信号检测算法的渐近鲁棒系数
在许多实际的信号检测中,噪声分布的形式以及许多信号和干扰参数都可能是先验不确定的。因此,在噪声环境发生变化的情况下,能否保持检测算法的性能是关键问题之一。在大多数情况下,在合成阶段,不可能保证算法的平均损失与噪声分布的独立性,这就需要估计算法在非参数先验不确定性情况下的平均损失的稳定性。这种特性通常称为鲁棒性。本文提出了可用来估计信号检测算法鲁棒性的渐近鲁棒系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信