{"title":"An improved Apriori algorithm for association rules of mining","authors":"Yong-qing Wei, Ren-hua Yang, Pei-yu Liu","doi":"10.1109/ITIME.2009.5236211","DOIUrl":null,"url":null,"abstract":"Apriori --the classical association rules mining algorithm is a way to find out certain potential, regular knowledge from the massive ones. But there are two more serious defects in the data mining process. The first needs many times to scan the business database and the second will inevitably produce a large number of irrelevant candidate sets which seriously occupy the system resources. An improved method is introduced on the basic of the defects above. The improved algorithm only scans the database once, at the same time the discrete data and statistics related are completed, and the final one is to prune the candidate item sets according to the minimum supporting degree and the character of the frequent item sets. After analysis, the improved algorithm reduces the system resources occupied and improves the efficiency and quality.","PeriodicalId":398477,"journal":{"name":"2009 IEEE International Symposium on IT in Medicine & Education","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on IT in Medicine & Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITIME.2009.5236211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
Apriori --the classical association rules mining algorithm is a way to find out certain potential, regular knowledge from the massive ones. But there are two more serious defects in the data mining process. The first needs many times to scan the business database and the second will inevitably produce a large number of irrelevant candidate sets which seriously occupy the system resources. An improved method is introduced on the basic of the defects above. The improved algorithm only scans the database once, at the same time the discrete data and statistics related are completed, and the final one is to prune the candidate item sets according to the minimum supporting degree and the character of the frequent item sets. After analysis, the improved algorithm reduces the system resources occupied and improves the efficiency and quality.