Correlation based fingerprint liveness detection

Z. Akhtar, C. Micheloni, G. Foresti
{"title":"Correlation based fingerprint liveness detection","authors":"Z. Akhtar, C. Micheloni, G. Foresti","doi":"10.1109/ICB.2015.7139054","DOIUrl":null,"url":null,"abstract":"Fingerprint recognition systems are vulnerable to spoof attacks, which consist in presenting forged fingerprints to the sensor. Typical anti-spoofing mechanism is fingerprint liveness detection. Existing liveness detection methods are still not robust to spoofing materials, datasets and sensor variations. In particular, the performance of a liveness detection algorithm remarkably drops upon encountering spoof fabrication materials that were not used during the training stage. Likewise, a quintessential liveness detection method needs to be adapted and retrained to new spoofing materials, datasets and each sensor used for acquiring the fingerprints. In this paper, we propose a framework that first performs correlation mapping between live and spoof fingerprints and then uses a discriminative-generative classification scheme for spoof detection. Partial Least Squares (PLS) is utilized to learn the correlations. While, support vector machine (SVM) is combined with three generative classifiers, namely Gaussian Mixture Model, Gaussian Copula, and Quadratic Discriminant Analysis, for final classification. Experiments on the publicly available LivDet2011 and LivDet2013 datasets, show that the proposed method outperforms the existing methods alongside cross-spoof material and cross-sensor techniques.","PeriodicalId":237372,"journal":{"name":"2015 International Conference on Biometrics (ICB)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2015.7139054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Fingerprint recognition systems are vulnerable to spoof attacks, which consist in presenting forged fingerprints to the sensor. Typical anti-spoofing mechanism is fingerprint liveness detection. Existing liveness detection methods are still not robust to spoofing materials, datasets and sensor variations. In particular, the performance of a liveness detection algorithm remarkably drops upon encountering spoof fabrication materials that were not used during the training stage. Likewise, a quintessential liveness detection method needs to be adapted and retrained to new spoofing materials, datasets and each sensor used for acquiring the fingerprints. In this paper, we propose a framework that first performs correlation mapping between live and spoof fingerprints and then uses a discriminative-generative classification scheme for spoof detection. Partial Least Squares (PLS) is utilized to learn the correlations. While, support vector machine (SVM) is combined with three generative classifiers, namely Gaussian Mixture Model, Gaussian Copula, and Quadratic Discriminant Analysis, for final classification. Experiments on the publicly available LivDet2011 and LivDet2013 datasets, show that the proposed method outperforms the existing methods alongside cross-spoof material and cross-sensor techniques.
基于相关性的指纹活性检测
指纹识别系统容易受到欺骗攻击,这包括向传感器提供伪造的指纹。典型的防欺骗机制是指纹活动性检测。现有的活体检测方法对欺骗材料、数据集和传感器的变化仍然不具有鲁棒性。特别是,当遇到训练阶段未使用的欺骗制造材料时,活动性检测算法的性能显着下降。同样,一个典型的活体检测方法需要调整和重新训练,以适应新的欺骗材料、数据集和用于获取指纹的每个传感器。在本文中,我们提出了一个框架,该框架首先在真实指纹和欺骗指纹之间进行相关映射,然后使用判别生成分类方案进行欺骗检测。利用偏最小二乘(PLS)来学习相关性。支持向量机(SVM)结合高斯混合模型(Gaussian Mixture Model)、高斯Copula和二次判别分析(Quadratic Discriminant Analysis)三种生成分类器进行最终分类。在公开可用的LivDet2011和LivDet2013数据集上的实验表明,该方法优于现有的交叉欺骗材料和交叉传感器技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信