Progress towards an electrically small antenna with high efficiency and large bandwidth simultaneously with high directivity and a large front-to-back ratio
{"title":"Progress towards an electrically small antenna with high efficiency and large bandwidth simultaneously with high directivity and a large front-to-back ratio","authors":"R. Ziolkowski, M. Tang, Ning Zhu","doi":"10.1109/IWAT.2013.6518326","DOIUrl":null,"url":null,"abstract":"Non-Foster element-augmented, electrically small electric and magnetic antennas have been designed, characterized numerically, fabricated and tested. Internal non-Foster elements, which produce specifically tailored broad bandwidth inductive and capacitive devices, are introduced into the near-field resonant parasitic (NFRP) components of their narrow bandwidth counter-parts. This internal non-Foster element approach leads to nearly complete matching of the entire system to a 50 Ω source without any matching network and high radiation efficiencies over a FBW10dB bandwidth that surpasses the fundamental passive bound. By including additional parasitic elements, one can also enhance the directivity of the original passive NFRP antenna. Further augmenting such a parasitic element with a non-Foster element, one can additionally achieve a large directivity bandwidth. A 300 MHz design with ka = 0.94 is reported which simultaneously achieves high radiation efficiencies (>81.63%), high directivities (> 6.25 dB) and large front-to-back-ratios (> 26.71 dB) over a 10.0% fractional bandwidth.","PeriodicalId":247542,"journal":{"name":"2013 International Workshop on Antenna Technology (iWAT)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Workshop on Antenna Technology (iWAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWAT.2013.6518326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Non-Foster element-augmented, electrically small electric and magnetic antennas have been designed, characterized numerically, fabricated and tested. Internal non-Foster elements, which produce specifically tailored broad bandwidth inductive and capacitive devices, are introduced into the near-field resonant parasitic (NFRP) components of their narrow bandwidth counter-parts. This internal non-Foster element approach leads to nearly complete matching of the entire system to a 50 Ω source without any matching network and high radiation efficiencies over a FBW10dB bandwidth that surpasses the fundamental passive bound. By including additional parasitic elements, one can also enhance the directivity of the original passive NFRP antenna. Further augmenting such a parasitic element with a non-Foster element, one can additionally achieve a large directivity bandwidth. A 300 MHz design with ka = 0.94 is reported which simultaneously achieves high radiation efficiencies (>81.63%), high directivities (> 6.25 dB) and large front-to-back-ratios (> 26.71 dB) over a 10.0% fractional bandwidth.