Joint Bayesian stochastic AVA inversion of well-log and seismic data for facies estimation

Y. Luo, Y. Chen, P. Chen, J. Cui, L. Li, Z. Wan, H. Xue
{"title":"Joint Bayesian stochastic AVA inversion of well-log and seismic data for facies estimation","authors":"Y. Luo, Y. Chen, P. Chen, J. Cui, L. Li, Z. Wan, H. Xue","doi":"10.3997/2214-4609.202113086","DOIUrl":null,"url":null,"abstract":"Summary Due to the inherent band-limited character of seismic data, conventional deterministic inversion methods cannot identify thin reservoir information beyond the seismic resolution. Besides, traditional Monte Carlo-based stochastic inversion requires a large number of iterative sampling, which is computational inefficiency. Hence, we develop a joint Bayesian stochastic AVA inversion method based on the linear inverse Gaussian theory and geostatistics. It directly integrates seismic data, well-log data and geostatistical information into a unified expression under the Bayesian framework, and uses the sequential Gaussian simulation to efficiently sample the joint posterior probability density function. The synthetic data example verifies the advantages of better consistency at the locations of har data and the reduction of the inversion uncertainty compared to the classical Bayesian linearized AVA inversion. The field data example shows the validity of this method in the quantitative estimation of facies.","PeriodicalId":265130,"journal":{"name":"82nd EAGE Annual Conference & Exhibition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"82nd EAGE Annual Conference & Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.202113086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary Due to the inherent band-limited character of seismic data, conventional deterministic inversion methods cannot identify thin reservoir information beyond the seismic resolution. Besides, traditional Monte Carlo-based stochastic inversion requires a large number of iterative sampling, which is computational inefficiency. Hence, we develop a joint Bayesian stochastic AVA inversion method based on the linear inverse Gaussian theory and geostatistics. It directly integrates seismic data, well-log data and geostatistical information into a unified expression under the Bayesian framework, and uses the sequential Gaussian simulation to efficiently sample the joint posterior probability density function. The synthetic data example verifies the advantages of better consistency at the locations of har data and the reduction of the inversion uncertainty compared to the classical Bayesian linearized AVA inversion. The field data example shows the validity of this method in the quantitative estimation of facies.
测井和地震资料联合贝叶斯随机AVA反演相估计
由于地震资料固有的带限特性,常规的确定性反演方法无法识别超出地震分辨率的薄储层信息。此外,传统的蒙特卡罗随机反演需要大量的迭代采样,计算效率低下。因此,基于线性逆高斯理论和地统计学,提出了一种联合贝叶斯随机AVA反演方法。它直接将地震数据、测井数据和地统计信息在贝叶斯框架下统一表达,并采用序贯高斯模拟对联合后验概率密度函数进行高效采样。综合数据实例验证了与经典贝叶斯线性化AVA反演相比,该方法在har数据位置上具有更好的一致性和降低反演不确定性的优点。现场数据算例表明了该方法在相定量估计中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信