Finding Semantic Relationships in Folksonomies

Iman Saleh, Neamat El-Tazi
{"title":"Finding Semantic Relationships in Folksonomies","authors":"Iman Saleh, Neamat El-Tazi","doi":"10.1109/WI.2018.00-92","DOIUrl":null,"url":null,"abstract":"In this paper we study the problem of finding semantic relationships between folksonomy tags. We investigate different methods used to embed tags in the vector space and find similarities between them using word embedding vectors. We also present two new methods for embedding tags in the vector space utilizing labeled Latent Dirichlet Allocation (LDA) and Wikipedia category links. Related tags are grouped into communities using an overlapping community detection technique. In order to evaluate tag embedding methods, we use three different evaluation metrics, two of them do not require a ground truth dataset and the third is based on a manually created dataset of ground truth communities. Our results show that representing folksonomy tags using bag of words and embedding this representation in the vector space yields the best results compared to embedding co-occurring tags only or embedding tags along with textual content of tagged documents. We also compare between using word embedding, Latent Semantic Indexing (LSI), and LDA to find similarities between bag of words representations of tags. We show that word embedding outperforms LSI in one representation, while LDA is hard to beat.","PeriodicalId":405966,"journal":{"name":"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2018.00-92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper we study the problem of finding semantic relationships between folksonomy tags. We investigate different methods used to embed tags in the vector space and find similarities between them using word embedding vectors. We also present two new methods for embedding tags in the vector space utilizing labeled Latent Dirichlet Allocation (LDA) and Wikipedia category links. Related tags are grouped into communities using an overlapping community detection technique. In order to evaluate tag embedding methods, we use three different evaluation metrics, two of them do not require a ground truth dataset and the third is based on a manually created dataset of ground truth communities. Our results show that representing folksonomy tags using bag of words and embedding this representation in the vector space yields the best results compared to embedding co-occurring tags only or embedding tags along with textual content of tagged documents. We also compare between using word embedding, Latent Semantic Indexing (LSI), and LDA to find similarities between bag of words representations of tags. We show that word embedding outperforms LSI in one representation, while LDA is hard to beat.
在大众分类法中寻找语义关系
本文研究了大众分类法标签之间的语义关系问题。我们研究了用于在向量空间中嵌入标签的不同方法,并使用词嵌入向量找到它们之间的相似性。我们还提出了两种在向量空间中嵌入标签的新方法,利用标记的潜在狄利克雷分配(LDA)和维基百科类别链接。使用重叠社区检测技术将相关标签分组到社区中。为了评估标签嵌入方法,我们使用了三种不同的评估指标,其中两种不需要ground truth数据集,第三种基于手动创建的ground truth社区数据集。我们的研究结果表明,与只嵌入共同出现的标签或将标签与标记文档的文本内容一起嵌入相比,使用词包表示大众分类法标签并将这种表示嵌入向量空间产生了最好的结果。我们还比较了使用词嵌入、潜在语义索引(LSI)和LDA来寻找标签的词表示之间的相似性。我们表明,词嵌入在一个表示中优于LSI,而LDA很难被击败。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信