Max-plus algebra and max-plus linear discrete event systems: An introduction

B. Schutter, T. Boom
{"title":"Max-plus algebra and max-plus linear discrete event systems: An introduction","authors":"B. Schutter, T. Boom","doi":"10.1109/WODES.2008.4605919","DOIUrl":null,"url":null,"abstract":"We provide an introduction to the max-plus algebra and explain how it can be used to model a specific class of discrete event systems with synchronization but no concurrency. Such systems are called max-plus linear discrete event systems because they can be described by a model that is ldquolinearrdquo in the max-plus algebra. We discuss some key properties of the max-plus algebra and indicate how these properties can be used to analyze the behavior of max-plus linear discrete event systems. We also briefly present some control approaches for max-plus linear discrete event systems, including model predictive control. Finally, we discuss some extensions of the max-plus algebra and of max-plus linear systems.","PeriodicalId":105225,"journal":{"name":"2008 9th International Workshop on Discrete Event Systems","volume":"299 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 9th International Workshop on Discrete Event Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WODES.2008.4605919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

We provide an introduction to the max-plus algebra and explain how it can be used to model a specific class of discrete event systems with synchronization but no concurrency. Such systems are called max-plus linear discrete event systems because they can be described by a model that is ldquolinearrdquo in the max-plus algebra. We discuss some key properties of the max-plus algebra and indicate how these properties can be used to analyze the behavior of max-plus linear discrete event systems. We also briefly present some control approaches for max-plus linear discrete event systems, including model predictive control. Finally, we discuss some extensions of the max-plus algebra and of max-plus linear systems.
最大加代数和最大加线性离散事件系统:导论
我们介绍了max-plus代数,并解释了如何使用它来建模具有同步但没有并发的特定类离散事件系统。这样的系统被称为max-plus线性离散事件系统,因为它们可以用一个在max-plus代数中不是线性的模型来描述。我们讨论了max-plus代数的一些关键性质,并指出如何利用这些性质来分析max-plus线性离散事件系统的行为。我们还简要地介绍了一些控制方法的最大+线性离散事件系统,包括模型预测控制。最后,讨论了极大正代数和极大正线性系统的一些推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信