STUDY OF THE POSSIBILITY OF USING MACHINE LEARNING METHODS TO PREDICT THE DEVELOPMENT OF BRANCHES OF SCIENCE

Н.И. Морозова, А.Н. Берёза, Н.В. Берёза
{"title":"STUDY OF THE POSSIBILITY OF USING MACHINE LEARNING METHODS TO PREDICT THE DEVELOPMENT OF BRANCHES OF SCIENCE","authors":"Н.И. Морозова, А.Н. Берёза, Н.В. Берёза","doi":"10.36622/vstu.2022.88.2.016","DOIUrl":null,"url":null,"abstract":"Статья посвящена определению принципа использования библиометрических показателей при создании подсистемы прогнозирования публикационной активности с использованием интеллектуальных методов. Показано, что наиболее оптимальным является метод машинного обучения DecisionTree.\n The article is devoted to determining the principle of using bibliometric indicators when creating a subsystem for predicting publication activity using intelligent methods. Key bibliometric indicators and examples of calculations for three areas within the technical scientific direction are presented: neural networks, genetic algorithms and data science. Machine learning methods for forecasting under uncertainty are analyzed. The choice of tools for the development of a mathematical model of the decision-making process in the field of scientific research has been made. It is shown that the DecisionTree machine learning method is the most optimal. The methodological apparatus is described, a training sample is created, and a predictive mathematical model is proposed that allows one to speak with sufficient accuracy about the number of future publications within each selected scientific group.","PeriodicalId":331043,"journal":{"name":"СИСТЕМЫ УПРАВЛЕНИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"СИСТЕМЫ УПРАВЛЕНИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36622/vstu.2022.88.2.016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Статья посвящена определению принципа использования библиометрических показателей при создании подсистемы прогнозирования публикационной активности с использованием интеллектуальных методов. Показано, что наиболее оптимальным является метод машинного обучения DecisionTree. The article is devoted to determining the principle of using bibliometric indicators when creating a subsystem for predicting publication activity using intelligent methods. Key bibliometric indicators and examples of calculations for three areas within the technical scientific direction are presented: neural networks, genetic algorithms and data science. Machine learning methods for forecasting under uncertainty are analyzed. The choice of tools for the development of a mathematical model of the decision-making process in the field of scientific research has been made. It is shown that the DecisionTree machine learning method is the most optimal. The methodological apparatus is described, a training sample is created, and a predictive mathematical model is proposed that allows one to speak with sufficient accuracy about the number of future publications within each selected scientific group.
研究使用机器学习方法预测科学分支发展的可能性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信