{"title":"Rearranging absolutely covergent well-ordered series in Banach spaces","authors":"Vedran vCavci'c, Marko Doko, M. Horvat","doi":"10.21857/yq32oh4qd9","DOIUrl":null,"url":null,"abstract":"Reordering the terms of a series is a useful mathematical device, and much is known about when it can be done without affecting the convergence or the sum of the series. For example, if a series of real numbers absolutely converges, we can add the even-indexed and odd-indexed terms separately, or arrange the terms in an infinite two-dimensional table and first compute the sum of each column. The possibility of even more intricate re-orderings prompts us to find a general underlying principle. We identify such a principle in the setting of Banach spaces, where we consider well-ordered series with indices beyond {\\omega}, but strictly under {\\omega}_1 . We prove that for every absolutely convergent well-ordered series indexed by a countable ordinal, if the series is rearranged according to any countable ordinal, then the absolute convergence and the sum of the series remain unchanged.","PeriodicalId":269525,"journal":{"name":"Rad Hrvatske akademije znanosti i umjetnosti. Matematičke znanosti","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rad Hrvatske akademije znanosti i umjetnosti. Matematičke znanosti","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21857/yq32oh4qd9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Reordering the terms of a series is a useful mathematical device, and much is known about when it can be done without affecting the convergence or the sum of the series. For example, if a series of real numbers absolutely converges, we can add the even-indexed and odd-indexed terms separately, or arrange the terms in an infinite two-dimensional table and first compute the sum of each column. The possibility of even more intricate re-orderings prompts us to find a general underlying principle. We identify such a principle in the setting of Banach spaces, where we consider well-ordered series with indices beyond {\omega}, but strictly under {\omega}_1 . We prove that for every absolutely convergent well-ordered series indexed by a countable ordinal, if the series is rearranged according to any countable ordinal, then the absolute convergence and the sum of the series remain unchanged.