Survey Methodology

John P. Robinson, V. Andreyenkov, Vasily D. Patrushev
{"title":"Survey Methodology","authors":"John P. Robinson, V. Andreyenkov, Vasily D. Patrushev","doi":"10.4324/9780429314254-2","DOIUrl":null,"url":null,"abstract":"The analysis of survey data from different geographical areas, where the data from each area are polychotomous, can be easily performed using hierarchical Bayesian models even if there are small cell counts in some of these areas. However, there are difficulties when the survey data have missing information in the form of nonresponse especially when the characteristics of the respondents differ from the nonrespondents. We use the selection approach for estimation when there are nonrespondents because it permits inference for all the parameters. Specifically, we describe a hierarchical Bayesian model to analyze multinomial nonignorable nonresponse data from different geographical areas, some of them can be small. For the model, we use a Dirichlet prior density for the multinomial probabilities and a beta prior density for the response probabilities. This permits a “borrowing of strength” of the data from larger areas to improve the reliability in the estimates of the model parameters corresponding to the smaller areas. Because the joint posterior density of all the parameters is complex, inference is sampling based and Markov chain Monte Carlo methods are used. We apply our method to provide an analysis of body mass index (BMI) data from the third National Health and Nutrition Examination Survey (NHANES III). For simplicity, the BMI is categorized into three natural levels, and this is done for each of eight age-race-sex domains and thirty-four counties. We assess the performance of our model using the NHANES III data and simulated examples, which show our model works reasonably well.","PeriodicalId":185850,"journal":{"name":"The Rhythm of Everyday Life","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Rhythm of Everyday Life","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4324/9780429314254-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The analysis of survey data from different geographical areas, where the data from each area are polychotomous, can be easily performed using hierarchical Bayesian models even if there are small cell counts in some of these areas. However, there are difficulties when the survey data have missing information in the form of nonresponse especially when the characteristics of the respondents differ from the nonrespondents. We use the selection approach for estimation when there are nonrespondents because it permits inference for all the parameters. Specifically, we describe a hierarchical Bayesian model to analyze multinomial nonignorable nonresponse data from different geographical areas, some of them can be small. For the model, we use a Dirichlet prior density for the multinomial probabilities and a beta prior density for the response probabilities. This permits a “borrowing of strength” of the data from larger areas to improve the reliability in the estimates of the model parameters corresponding to the smaller areas. Because the joint posterior density of all the parameters is complex, inference is sampling based and Markov chain Monte Carlo methods are used. We apply our method to provide an analysis of body mass index (BMI) data from the third National Health and Nutrition Examination Survey (NHANES III). For simplicity, the BMI is categorized into three natural levels, and this is done for each of eight age-race-sex domains and thirty-four counties. We assess the performance of our model using the NHANES III data and simulated examples, which show our model works reasonably well.
调查方法
对来自不同地理区域的调查数据的分析(每个区域的数据都是多聚的)可以使用分层贝叶斯模型很容易地执行,即使其中一些区域的细胞计数很小。然而,当调查数据以非回应的形式存在信息缺失时,特别是当被调查者与非被调查者的特征不同时,就存在困难。当存在非应答者时,我们使用选择方法进行估计,因为它允许对所有参数进行推断。具体来说,我们描述了一个层次贝叶斯模型来分析来自不同地理区域的多项不可忽略非响应数据,其中一些数据可能很小。对于该模型,我们使用Dirichlet先验密度来表示多项概率,使用beta先验密度来表示响应概率。这允许从较大区域“借用强度”的数据,以提高与较小区域相对应的模式参数估计的可靠性。由于所有参数的联合后验密度是复杂的,所以推理是基于抽样的,并使用马尔可夫链蒙特卡罗方法。我们运用我们的方法对来自第三次全国健康与营养调查(NHANES III)的身体质量指数(BMI)数据进行了分析。为了简单起见,BMI被分为三个自然水平,并对八个年龄、种族、性别领域和34个县进行了分析。我们使用NHANES III数据和仿真实例对模型进行了性能评估,结果表明我们的模型运行良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信