Robust and Heterogenous Odds Ratio: Estimating Price Sensitivity for Unbought Items

J. Pauphilet
{"title":"Robust and Heterogenous Odds Ratio: Estimating Price Sensitivity for Unbought Items","authors":"J. Pauphilet","doi":"10.1287/msom.2022.1118","DOIUrl":null,"url":null,"abstract":"Problem definition: Mining for heterogeneous responses to an intervention is a crucial step for data-driven operations, for instance, to personalize treatment or pricing. We investigate how to estimate price sensitivity from transaction-level data. In causal inference terms, we estimate heterogeneous treatment effects when (a) the response to treatment (here, whether a customer buys a product) is binary, and (b) treatment assignments are partially observed (here, full information is only available for purchased items). Methodology/Results: We propose a recursive partitioning procedure to estimate heterogeneous odds ratio, a widely used measure of treatment effect in medicine and social sciences. We integrate an adversarial imputation step to allow for robust estimation even in presence of partially observed treatment assignments. We validate our methodology on synthetic data and apply it to three case studies from political science, medicine, and revenue management. Managerial implications: Our robust heterogeneous odds ratio estimation method is a simple and intuitive tool to quantify heterogeneity in patients or customers and personalize interventions, while lifting a central limitation in many revenue management data.","PeriodicalId":119284,"journal":{"name":"Manufacturing & Service Operations Management","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing & Service Operations Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/msom.2022.1118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Problem definition: Mining for heterogeneous responses to an intervention is a crucial step for data-driven operations, for instance, to personalize treatment or pricing. We investigate how to estimate price sensitivity from transaction-level data. In causal inference terms, we estimate heterogeneous treatment effects when (a) the response to treatment (here, whether a customer buys a product) is binary, and (b) treatment assignments are partially observed (here, full information is only available for purchased items). Methodology/Results: We propose a recursive partitioning procedure to estimate heterogeneous odds ratio, a widely used measure of treatment effect in medicine and social sciences. We integrate an adversarial imputation step to allow for robust estimation even in presence of partially observed treatment assignments. We validate our methodology on synthetic data and apply it to three case studies from political science, medicine, and revenue management. Managerial implications: Our robust heterogeneous odds ratio estimation method is a simple and intuitive tool to quantify heterogeneity in patients or customers and personalize interventions, while lifting a central limitation in many revenue management data.
稳健性和异质性优势比:估计未购买物品的价格敏感性
问题定义:挖掘对干预措施的异构响应是数据驱动操作的关键步骤,例如,个性化治疗或定价。我们研究如何从交易级数据估计价格敏感性。在因果推理方面,当(a)对处理的反应(这里,客户是否购买产品)是二元的,以及(b)处理分配是部分观察到的(这里,完整的信息仅适用于购买的物品),我们估计异质处理效果。方法/结果:我们提出了一个递归分割程序来估计异质性优势比,这是医学和社会科学中广泛使用的治疗效果衡量标准。我们整合了一个对抗的估算步骤,即使在部分观察到的治疗分配存在的情况下,也允许稳健的估计。我们在综合数据上验证了我们的方法,并将其应用于政治学、医学和收入管理的三个案例研究。管理意义:我们稳健的异质性优势比估计方法是一种简单直观的工具,可以量化患者或客户的异质性,并个性化干预措施,同时消除了许多收入管理数据中的核心限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信