Data Partitioning on Heterogeneous Multicore Platforms

Ziming Zhong, V. Rychkov, Alexey L. Lastovetsky
{"title":"Data Partitioning on Heterogeneous Multicore Platforms","authors":"Ziming Zhong, V. Rychkov, Alexey L. Lastovetsky","doi":"10.1109/CLUSTER.2011.64","DOIUrl":null,"url":null,"abstract":"In this paper, we present two techniques for inter- and intra-node data partitioning aimed at load balancing MPI applications on heterogeneous multicore platforms. For load balancing between the multicore nodes of a heterogeneous multicore cluster, we propose how to define a functional performance model of an individual multicore node as a single computing unit, and use these models for data partitioning between the nodes. For load balancing within a heterogeneous multicore node, we propose a data partitioning technique between cores. Since parallel processes interfere with each other through shared memory, the speed of individual cores cannot be measured independently, and independent performance models cannot be defined for cores. Therefore, for a given problem size, we dynamically evaluate the performance of cores, while they are executing only the computational kernel of parallel application, and partition data proportionally to the observed speed.","PeriodicalId":200830,"journal":{"name":"2011 IEEE International Conference on Cluster Computing","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTER.2011.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

In this paper, we present two techniques for inter- and intra-node data partitioning aimed at load balancing MPI applications on heterogeneous multicore platforms. For load balancing between the multicore nodes of a heterogeneous multicore cluster, we propose how to define a functional performance model of an individual multicore node as a single computing unit, and use these models for data partitioning between the nodes. For load balancing within a heterogeneous multicore node, we propose a data partitioning technique between cores. Since parallel processes interfere with each other through shared memory, the speed of individual cores cannot be measured independently, and independent performance models cannot be defined for cores. Therefore, for a given problem size, we dynamically evaluate the performance of cores, while they are executing only the computational kernel of parallel application, and partition data proportionally to the observed speed.
异构多核平台的数据分区
在本文中,我们提出了两种用于节点间和节点内数据分区的技术,旨在实现异构多核平台上MPI应用程序的负载平衡。为了在异构多核集群的多核节点之间实现负载平衡,我们提出了如何将单个多核节点定义为单个计算单元的功能性能模型,并使用这些模型在节点之间进行数据分区。为了实现异构多核节点内的负载均衡,提出了一种核间数据分区技术。由于并行进程通过共享内存相互干扰,因此无法独立测量单个内核的速度,也无法为内核定义独立的性能模型。因此,对于给定的问题大小,我们动态地评估内核的性能,而它们只执行并行应用程序的计算内核,并根据观察到的速度按比例划分数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信