GAN-based Vision Transformer for High-Quality Thermal Image Enhancement

M. Marnissi, A. Fathallah
{"title":"GAN-based Vision Transformer for High-Quality Thermal Image Enhancement","authors":"M. Marnissi, A. Fathallah","doi":"10.1109/CVPRW59228.2023.00089","DOIUrl":null,"url":null,"abstract":"Generative Adversarial Networks (GANs) have shown an outstanding ability to generate high-quality images with visual realism and similarity to real images. This paper presents a new architecture for thermal image enhancement. Precisely, the strengths of architecture-based vision transformers and generative adversarial networks are exploited. The thermal loss feature introduced in our approach is specifically used to produce high-quality images. Thermal image enhancement also relies on fine-tuning based on visible images, resulting in an overall improvement in image quality. A visual quality metric was used to evaluate the performance of the proposed architecture. Significant improvements were found over the original thermal images and other enhancement methods established on a subset of the KAIST dataset. The performance of the proposed enhancement architecture is also verified on the detection results by obtaining better performance with a considerable margin regarding different versions of the YOLO detector.","PeriodicalId":355438,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW59228.2023.00089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Generative Adversarial Networks (GANs) have shown an outstanding ability to generate high-quality images with visual realism and similarity to real images. This paper presents a new architecture for thermal image enhancement. Precisely, the strengths of architecture-based vision transformers and generative adversarial networks are exploited. The thermal loss feature introduced in our approach is specifically used to produce high-quality images. Thermal image enhancement also relies on fine-tuning based on visible images, resulting in an overall improvement in image quality. A visual quality metric was used to evaluate the performance of the proposed architecture. Significant improvements were found over the original thermal images and other enhancement methods established on a subset of the KAIST dataset. The performance of the proposed enhancement architecture is also verified on the detection results by obtaining better performance with a considerable margin regarding different versions of the YOLO detector.
基于gan的高质量热图像增强视觉变压器
生成对抗网络(GANs)在生成具有视觉真实感和与真实图像相似的高质量图像方面表现出了出色的能力。提出了一种新的热图像增强体系结构。准确地说,基于架构的视觉转换器和生成对抗网络的优势得到了利用。我们的方法中引入的热损失特征专门用于生成高质量的图像。热图像增强也依赖于基于可见图像的微调,从而导致图像质量的整体改善。使用视觉质量度量来评估所提出的体系结构的性能。在原始热图像和基于KAIST数据集子集建立的其他增强方法的基础上,发现了显著的改进。对于不同版本的YOLO检测器,所提出的增强体系结构的性能也在检测结果上得到了验证,并获得了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信