Supervisory control architecture for underwater teleoperation

D. Yoerger, J. Slotine
{"title":"Supervisory control architecture for underwater teleoperation","authors":"D. Yoerger, J. Slotine","doi":"10.1109/ROBOT.1987.1087890","DOIUrl":null,"url":null,"abstract":"An overall concept and specific system elements for teleoperated vehicles and manipulators are presented. The approach emphasizes continuous, real-time sharing of control between both the human operator and the computer system and is intended for application to the JASON underwater vehicle now in development. As JASON will have extremely high communications bandwidth available through a fiber optic cable, the emphasis will be on aiding and extending the capabilities of the human operator. Specific elements presented include task-resolved motion specification, rule-based inverse kinematics, and robust and adaptive nonlinear tracking control.","PeriodicalId":438447,"journal":{"name":"Proceedings. 1987 IEEE International Conference on Robotics and Automation","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1987 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.1987.1087890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

An overall concept and specific system elements for teleoperated vehicles and manipulators are presented. The approach emphasizes continuous, real-time sharing of control between both the human operator and the computer system and is intended for application to the JASON underwater vehicle now in development. As JASON will have extremely high communications bandwidth available through a fiber optic cable, the emphasis will be on aiding and extending the capabilities of the human operator. Specific elements presented include task-resolved motion specification, rule-based inverse kinematics, and robust and adaptive nonlinear tracking control.
水下遥操作监控体系结构
提出了遥控车辆和机械手的总体概念和具体系统要素。该方法强调人类操作员和计算机系统之间的连续、实时控制共享,旨在应用于目前正在开发的JASON水下航行器。由于JASON将通过光纤电缆提供极高的通信带宽,因此重点将放在辅助和扩展人类操作员的能力上。具体内容包括任务分解运动规范、基于规则的逆运动学、鲁棒和自适应非线性跟踪控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信