Self-Correlation Analysis Framework with Property Data in Master Data Management — A Case on Power Utility Equipment Retire Analysis

Zhongwen Qian, Fenghua Wang, Wanli Wu, Jingzhou Cheng, Yue Wang, Fangyuan Xu, L. Lai
{"title":"Self-Correlation Analysis Framework with Property Data in Master Data Management — A Case on Power Utility Equipment Retire Analysis","authors":"Zhongwen Qian, Fenghua Wang, Wanli Wu, Jingzhou Cheng, Yue Wang, Fangyuan Xu, L. Lai","doi":"10.1109/ICWAPR.2018.8521284","DOIUrl":null,"url":null,"abstract":"Causing Reason Locating (CRL) is a negative going decision making process. It provides specific individual causing reasons to events or abnormal variation so that decision maker can find out clear-cut points for updates or maintenance. Traditional CRL is usually implemented with self-correlation analysis on Value Comparable Data (VCD). Property Data (PD) is not covered in CRL for its nominal evaluations. This paper initiates a new scheme for PD data correlation analysis, including virtual data creation method and correlation balancing method for Kendall correlation computation. A numerical study is implemented for model support on equipment retire analysis.","PeriodicalId":385478,"journal":{"name":"2018 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2018.8521284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Causing Reason Locating (CRL) is a negative going decision making process. It provides specific individual causing reasons to events or abnormal variation so that decision maker can find out clear-cut points for updates or maintenance. Traditional CRL is usually implemented with self-correlation analysis on Value Comparable Data (VCD). Property Data (PD) is not covered in CRL for its nominal evaluations. This paper initiates a new scheme for PD data correlation analysis, including virtual data creation method and correlation balancing method for Kendall correlation computation. A numerical study is implemented for model support on equipment retire analysis.
主数据管理中属性数据的自相关分析框架——以电力设备退役分析为例
原因定位(CRL)是一个消极的决策过程。它为事件或异常变化提供了具体的个体导致原因,以便决策者可以找到明确的更新或维护点。传统的CRL通常通过对价值可比数据(VCD)的自相关分析来实现。CRL中不包括属性数据(PD)的名义评估。本文提出了一种新的PD数据关联分析方案,包括虚拟数据创建方法和Kendall关联计算的关联平衡方法。对设备退役分析的模型支持进行了数值研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信