Improved pedestrian detection by adjustment of segmented ROI in thermal night vision

Karol Piniarski, P. Pawlowski, A. Dabrowski
{"title":"Improved pedestrian detection by adjustment of segmented ROI in thermal night vision","authors":"Karol Piniarski, P. Pawlowski, A. Dabrowski","doi":"10.23919/spa50552.2020.9241295","DOIUrl":null,"url":null,"abstract":"In this work we present an analysis of the region of interest (ROI) generation from the source thermal night vision images through the double thresholding segmentation technique as a part of pedestrian detection procedure. In some cases, pedestrians do not fit into the generated ROIs. To solve the problem we propose to adjust (slightly enlarge) the segmented ROI. Through this, it is possible to reduce miss rate for the aggregated channel feature (ACF) classifier from 29.1% to 24.8% and for the deep convolutional neural network (CNN) classifier from 24.0% to 22.4%, with negligible impact on the processing time.","PeriodicalId":157578,"journal":{"name":"2020 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/spa50552.2020.9241295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we present an analysis of the region of interest (ROI) generation from the source thermal night vision images through the double thresholding segmentation technique as a part of pedestrian detection procedure. In some cases, pedestrians do not fit into the generated ROIs. To solve the problem we propose to adjust (slightly enlarge) the segmented ROI. Through this, it is possible to reduce miss rate for the aggregated channel feature (ACF) classifier from 29.1% to 24.8% and for the deep convolutional neural network (CNN) classifier from 24.0% to 22.4%, with negligible impact on the processing time.
利用热夜视分割感兴趣区域的调整改进行人检测
在这项工作中,我们提出了通过双阈值分割技术从源热夜视图像中产生感兴趣区域(ROI)的分析,作为行人检测过程的一部分。在某些情况下,行人不适合生成的roi。为了解决这个问题,我们建议调整(稍微扩大)分割的ROI。通过这种方法,可以将聚合通道特征(ACF)分类器的缺失率从29.1%降低到24.8%,将深度卷积神经网络(CNN)分类器的缺失率从24.0%降低到22.4%,而对处理时间的影响可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信