Stabilizer subsystem codes with spatially local generators

S. Bravyi
{"title":"Stabilizer subsystem codes with spatially local generators","authors":"S. Bravyi","doi":"10.1109/CIG.2010.5592872","DOIUrl":null,"url":null,"abstract":"We derive new tradeoffs for reliable quantum information storage in a 2D local architecture based on subsystem quantum codes. Our results apply to stabilizer subsystem codes, that is, stabilizer codes in which part of the logical qubits does not encode any information. A stabilizer subsystem code can be specified by its gauge group — a subgroup of the Pauli group that includes the stabilizers and the logical operators on the unused logical qubits. We assume that the physical qubits are arranged on a two-dimensional grid and the gauge group has spatially local generators such that each generator acts only on a few qubits located close to each other. Our main result is an upper bound kd = O(n), where k is the number of encoded qubits, d is the minimal distance, and n is the number of physical qubits. In the special case when both gauge group and the stabilizer group have spatially local generators, we derive a stronger bound kd2 = O(n) which is tight up to a constant factor.","PeriodicalId":354925,"journal":{"name":"2010 IEEE Information Theory Workshop","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Information Theory Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2010.5592872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We derive new tradeoffs for reliable quantum information storage in a 2D local architecture based on subsystem quantum codes. Our results apply to stabilizer subsystem codes, that is, stabilizer codes in which part of the logical qubits does not encode any information. A stabilizer subsystem code can be specified by its gauge group — a subgroup of the Pauli group that includes the stabilizers and the logical operators on the unused logical qubits. We assume that the physical qubits are arranged on a two-dimensional grid and the gauge group has spatially local generators such that each generator acts only on a few qubits located close to each other. Our main result is an upper bound kd = O(n), where k is the number of encoded qubits, d is the minimal distance, and n is the number of physical qubits. In the special case when both gauge group and the stabilizer group have spatially local generators, we derive a stronger bound kd2 = O(n) which is tight up to a constant factor.
具有空间局部生成器的稳定器子系统代码
在基于子系统量子码的二维局部架构中,我们得到了可靠的量子信息存储的新权衡。我们的结果适用于稳定器子系统代码,即部分逻辑量子位不编码任何信息的稳定器代码。稳定器子系统代码可以由它的规范群来指定——规范群是泡利群的一个子群,包括稳定器和未使用的逻辑量子位上的逻辑算子。我们假设物理量子位排列在二维网格上,规范群具有空间局部发生器,使得每个发生器仅作用于彼此靠近的几个量子位。我们的主要结果是一个上界kd = O(n),其中k是编码量子比特的数量,d是最小距离,n是物理量子比特的数量。在规范群和稳定群都有空间局部发生器的特殊情况下,我们得到了一个更强的界kd2 = O(n),它紧致于一个常数因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信