{"title":"Stabilizer subsystem codes with spatially local generators","authors":"S. Bravyi","doi":"10.1109/CIG.2010.5592872","DOIUrl":null,"url":null,"abstract":"We derive new tradeoffs for reliable quantum information storage in a 2D local architecture based on subsystem quantum codes. Our results apply to stabilizer subsystem codes, that is, stabilizer codes in which part of the logical qubits does not encode any information. A stabilizer subsystem code can be specified by its gauge group — a subgroup of the Pauli group that includes the stabilizers and the logical operators on the unused logical qubits. We assume that the physical qubits are arranged on a two-dimensional grid and the gauge group has spatially local generators such that each generator acts only on a few qubits located close to each other. Our main result is an upper bound kd = O(n), where k is the number of encoded qubits, d is the minimal distance, and n is the number of physical qubits. In the special case when both gauge group and the stabilizer group have spatially local generators, we derive a stronger bound kd2 = O(n) which is tight up to a constant factor.","PeriodicalId":354925,"journal":{"name":"2010 IEEE Information Theory Workshop","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Information Theory Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2010.5592872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We derive new tradeoffs for reliable quantum information storage in a 2D local architecture based on subsystem quantum codes. Our results apply to stabilizer subsystem codes, that is, stabilizer codes in which part of the logical qubits does not encode any information. A stabilizer subsystem code can be specified by its gauge group — a subgroup of the Pauli group that includes the stabilizers and the logical operators on the unused logical qubits. We assume that the physical qubits are arranged on a two-dimensional grid and the gauge group has spatially local generators such that each generator acts only on a few qubits located close to each other. Our main result is an upper bound kd = O(n), where k is the number of encoded qubits, d is the minimal distance, and n is the number of physical qubits. In the special case when both gauge group and the stabilizer group have spatially local generators, we derive a stronger bound kd2 = O(n) which is tight up to a constant factor.