Towards automatic full heart segmentation in computed-tomography images

O. Ecabert, J. Peters, C. Lorenz, J. von Berg, M. Vembar, K. Subramanyan, G. Lavi, J. Weese
{"title":"Towards automatic full heart segmentation in computed-tomography images","authors":"O. Ecabert, J. Peters, C. Lorenz, J. von Berg, M. Vembar, K. Subramanyan, G. Lavi, J. Weese","doi":"10.1109/CIC.2005.1588077","DOIUrl":null,"url":null,"abstract":"We present a robust, fast and fully automatic approach enabling the segmentation of the main anatomical structures of the heart in CT images. The proposed method is based on the adaptation of a 3D triangulated mesh to new unknown images exploiting simultaneously knowledge of organ shape and typical gray level appearance in images, both learned from a training database made of 28 data sets. The described approach was tested on more than 50 volume images at different cardiac phases. Visual inspection by experts reveals that the proposed method is overall robust and succeeds in segmenting the heart up to minor interactive local corrections","PeriodicalId":239491,"journal":{"name":"Computers in Cardiology, 2005","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Cardiology, 2005","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.2005.1588077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

We present a robust, fast and fully automatic approach enabling the segmentation of the main anatomical structures of the heart in CT images. The proposed method is based on the adaptation of a 3D triangulated mesh to new unknown images exploiting simultaneously knowledge of organ shape and typical gray level appearance in images, both learned from a training database made of 28 data sets. The described approach was tested on more than 50 volume images at different cardiac phases. Visual inspection by experts reveals that the proposed method is overall robust and succeeds in segmenting the heart up to minor interactive local corrections
计算机断层扫描图像中全心脏自动分割的研究
我们提出了一种鲁棒、快速和全自动的方法,可以在CT图像中分割心脏的主要解剖结构。该方法基于三维三角网格对新的未知图像的自适应,同时利用从28个数据集组成的训练数据库中学习到的器官形状和图像中典型的灰度外观知识。所描述的方法在50多个不同心脏期的体积图像上进行了测试。专家的视觉检查表明,所提出的方法总体上是鲁棒的,并且成功地将心脏分割到较小的交互局部校正
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信