Clustering Regression Wavelet Analysis for Lossless Compression of Hyperspectral Imagery

Eze Ahanonu, M. Marcellin, A. Bilgin
{"title":"Clustering Regression Wavelet Analysis for Lossless Compression of Hyperspectral Imagery","authors":"Eze Ahanonu, M. Marcellin, A. Bilgin","doi":"10.1109/DCC.2019.00063","DOIUrl":null,"url":null,"abstract":"Recently, Regression Wavelet Analysis (RWA) was proposed as a method for lossless compression of hyperspectral images. In RWA, a linear regression is performed after a spectral wavelet transform to generate predictors which estimate the detail coefficients from approximation coefficients at each scale of the spectral wavelet transform. In this work, we propose Clustering Regression Wavelet Analysis (RWA-C), an extension of the original 'Restricted' RWA model which may be used to improve compression performance while maintaining component scalability. We demonstrate that clustering may be used to group pixels with similar spectral profiles. These clusters may then be more efficiently processed to improve RWA prediction performance while only requiring a modest increase side-information and computational complexity.","PeriodicalId":167723,"journal":{"name":"2019 Data Compression Conference (DCC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Data Compression Conference (DCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2019.00063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Recently, Regression Wavelet Analysis (RWA) was proposed as a method for lossless compression of hyperspectral images. In RWA, a linear regression is performed after a spectral wavelet transform to generate predictors which estimate the detail coefficients from approximation coefficients at each scale of the spectral wavelet transform. In this work, we propose Clustering Regression Wavelet Analysis (RWA-C), an extension of the original 'Restricted' RWA model which may be used to improve compression performance while maintaining component scalability. We demonstrate that clustering may be used to group pixels with similar spectral profiles. These clusters may then be more efficiently processed to improve RWA prediction performance while only requiring a modest increase side-information and computational complexity.
高光谱图像无损压缩的聚类回归小波分析
近年来,回归小波分析(RWA)被提出作为高光谱图像无损压缩的一种方法。在RWA中,在谱小波变换后进行线性回归生成预测因子,该预测因子从谱小波变换的每个尺度的近似系数中估计细节系数。在这项工作中,我们提出了聚类回归小波分析(RWA- c),这是原始“受限”RWA模型的扩展,可用于在保持组件可扩展性的同时提高压缩性能。我们证明了聚类可以用来分组具有相似光谱轮廓的像素。然后,这些集群可以更有效地处理以提高RWA预测性能,同时只需要适度增加侧信息和计算复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信