Maarten Slembrouck, Jorge Oswaldo Niño Castañeda, Gianni Allebosch, Dimitri Van Cauwelaert, P. Veelaert, W. Philips
{"title":"High performance multi-camera tracking using shapes-from-silhouettes and occlusion removal","authors":"Maarten Slembrouck, Jorge Oswaldo Niño Castañeda, Gianni Allebosch, Dimitri Van Cauwelaert, P. Veelaert, W. Philips","doi":"10.1145/2789116.2789127","DOIUrl":null,"url":null,"abstract":"Reliable indoor tracking of objects and persons is still a major challenge in computer vision. As GPS is unavailable indoors, other methods have to be used. Multi-camera systems using colour cameras is one approach to tackle this problem. In this paper we will present a method based on shapes-from-silhouettes where the foreground/background segmentation videos are produced with state of the art methods. We will show that our tracker outperforms all the other trackers we evaluated and obtains an accuracy of 97.89% within 50 cm from the ground truth position on the proposed dataset.","PeriodicalId":113163,"journal":{"name":"Proceedings of the 9th International Conference on Distributed Smart Cameras","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Distributed Smart Cameras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2789116.2789127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Reliable indoor tracking of objects and persons is still a major challenge in computer vision. As GPS is unavailable indoors, other methods have to be used. Multi-camera systems using colour cameras is one approach to tackle this problem. In this paper we will present a method based on shapes-from-silhouettes where the foreground/background segmentation videos are produced with state of the art methods. We will show that our tracker outperforms all the other trackers we evaluated and obtains an accuracy of 97.89% within 50 cm from the ground truth position on the proposed dataset.