Recent Advances in Deep Neural Network Technique for High-Dimensional Microwave Modeling

Jing Jin, F. Feng, W. Zhang, Jianan Zhang, Zhihao Zhao, Qi-jun Zhang
{"title":"Recent Advances in Deep Neural Network Technique for High-Dimensional Microwave Modeling","authors":"Jing Jin, F. Feng, W. Zhang, Jianan Zhang, Zhihao Zhao, Qi-jun Zhang","doi":"10.1109/NEMO49486.2020.9343496","DOIUrl":null,"url":null,"abstract":"This paper provides an overview of recent advances in deep neural network technique for high-dimensional microwave modeling. The hybrid deep neural network that employs both the sigmoid function and the smooth rectified linear unit (ReLU) as activation functions is used for microwave modeling in order to address the challenges due to high-dimensional inputs. A three-stage deep learning algorithm is used to train the deep neural network model. It can overcome the vanishing gradient problem for training the deep neural network. The deep neural network technique can solve microwave modeling problems in higher dimension than the shallow neural network method.","PeriodicalId":305562,"journal":{"name":"2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMO49486.2020.9343496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper provides an overview of recent advances in deep neural network technique for high-dimensional microwave modeling. The hybrid deep neural network that employs both the sigmoid function and the smooth rectified linear unit (ReLU) as activation functions is used for microwave modeling in order to address the challenges due to high-dimensional inputs. A three-stage deep learning algorithm is used to train the deep neural network model. It can overcome the vanishing gradient problem for training the deep neural network. The deep neural network technique can solve microwave modeling problems in higher dimension than the shallow neural network method.
高维微波建模的深度神经网络技术研究进展
本文综述了用于高维微波建模的深度神经网络技术的最新进展。采用sigmoid函数和光滑整流线性单元(ReLU)作为激活函数的混合深度神经网络用于微波建模,以解决高维输入带来的挑战。采用三阶段深度学习算法对深度神经网络模型进行训练。它可以克服梯度消失问题,用于训练深度神经网络。与浅层神经网络方法相比,深层神经网络技术可以解决更高维度的微波建模问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信