Estimating friction coefficient using generative modelling

Mohammad Otoofi, William J. B. Midgley, L. Laine, Henderson Leon, L. Justham, James Fleming
{"title":"Estimating friction coefficient using generative modelling","authors":"Mohammad Otoofi, William J. B. Midgley, L. Laine, Henderson Leon, L. Justham, James Fleming","doi":"10.1109/ICM54990.2023.10101932","DOIUrl":null,"url":null,"abstract":"It is common to utilise dynamic models to measure the tyre-road friction in real-time. Alternatively, predictive approaches estimate the tyre-road friction by identifying the environmental factors affecting it. This work aims to formulate the problem of friction estimation as a visual perceptual learning task. The problem is broken down into detecting surface characteristics by applying semantic segmentation and using the extracted features to predict the frictional force. This work for the first time formulates the friction estimation problem as a regression from the latent space of a semantic segmentation model. The preliminary results indicate that this approach can estimate frictional force.","PeriodicalId":416176,"journal":{"name":"2023 IEEE International Conference on Mechatronics (ICM)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Mechatronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM54990.2023.10101932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is common to utilise dynamic models to measure the tyre-road friction in real-time. Alternatively, predictive approaches estimate the tyre-road friction by identifying the environmental factors affecting it. This work aims to formulate the problem of friction estimation as a visual perceptual learning task. The problem is broken down into detecting surface characteristics by applying semantic segmentation and using the extracted features to predict the frictional force. This work for the first time formulates the friction estimation problem as a regression from the latent space of a semantic segmentation model. The preliminary results indicate that this approach can estimate frictional force.
使用生成模型估计摩擦系数
利用动态模型实时测量轮胎与路面的摩擦是很常见的。或者,预测方法通过识别影响它的环境因素来估计轮胎与路面的摩擦。本工作旨在将摩擦估计问题表述为视觉感知学习任务。将该问题分解为通过语义分割检测表面特征,并利用提取的特征预测摩擦力。这项工作首次将摩擦估计问题表述为从语义分割模型的潜在空间回归。初步结果表明,该方法可以估计出摩擦力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信