Automatic SMT threading for OpenMP applications on the Intel Xeon Phi co-processor

ROSS@ICS Pub Date : 2014-06-10 DOI:10.1145/2612262.2612268
W. Heirman, Trevor E. Carlson, K. V. Craeynest, I. Hur, A. Jaleel, L. Eeckhout
{"title":"Automatic SMT threading for OpenMP applications on the Intel Xeon Phi co-processor","authors":"W. Heirman, Trevor E. Carlson, K. V. Craeynest, I. Hur, A. Jaleel, L. Eeckhout","doi":"10.1145/2612262.2612268","DOIUrl":null,"url":null,"abstract":"Simultaneous multithreading is a technique that can improve performance when running parallel applications on the Intel Xeon Phi co-processor. Selecting the most efficient thread count is however non-trivial, as the potential increase in efficiency has to be balanced against other, potentially negative factors such as inter-thread competition for cache capacity and increased synchronization overheads.\n In this paper, we extend CRUST (ClusteR-aware Undersubscribed Scheduling of Threads), a technique for finding the optimum thread count of OpenMP applications running on clustered cache architectures, to take the behavior of simultaneous multithreading on the Xeon Phi into account. CRUST can automatically find the optimum thread count at sub-application granularity by exploiting application phase behavior at OpenMP parallel section boundaries, and uses hardware performance counter information to gain insight into the application's behavior. We implement a CRUST prototype inside the Intel OpenMP runtime library and show its efficiency running on real Xeon Phi hardware.","PeriodicalId":216902,"journal":{"name":"ROSS@ICS","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ROSS@ICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2612262.2612268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Simultaneous multithreading is a technique that can improve performance when running parallel applications on the Intel Xeon Phi co-processor. Selecting the most efficient thread count is however non-trivial, as the potential increase in efficiency has to be balanced against other, potentially negative factors such as inter-thread competition for cache capacity and increased synchronization overheads. In this paper, we extend CRUST (ClusteR-aware Undersubscribed Scheduling of Threads), a technique for finding the optimum thread count of OpenMP applications running on clustered cache architectures, to take the behavior of simultaneous multithreading on the Xeon Phi into account. CRUST can automatically find the optimum thread count at sub-application granularity by exploiting application phase behavior at OpenMP parallel section boundaries, and uses hardware performance counter information to gain insight into the application's behavior. We implement a CRUST prototype inside the Intel OpenMP runtime library and show its efficiency running on real Xeon Phi hardware.
Intel Xeon Phi协处理器上OpenMP应用程序的自动SMT线程
同时多线程是一种在Intel Xeon Phi协处理器上运行并行应用程序时可以提高性能的技术。然而,选择最有效的线程数是非常重要的,因为效率的潜在提高必须与其他潜在的负面因素相平衡,例如线程间对缓存容量的竞争和同步开销的增加。在本文中,我们扩展了CRUST (ClusteR-aware undersubscribe Scheduling of Threads),这是一种用于查找运行在集群缓存架构上的OpenMP应用程序的最佳线程数的技术,以考虑Xeon Phi处理器上的同步多线程行为。通过利用OpenMP并行段边界上的应用程序阶段行为,CRUST可以自动找到子应用程序粒度上的最佳线程数,并使用硬件性能计数器信息来深入了解应用程序的行为。我们在Intel OpenMP运行库中实现了一个CRUST原型,并展示了它在实际Xeon Phi硬件上运行的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信