Proposal and FPGA implementation of DBSCAN clustering nonlinear detector for MMW RoF system

Wu Xu, Peixuan Li, X. Zou, Ningyuan Zhong, W. Pan, Lian-shan Yan
{"title":"Proposal and FPGA implementation of DBSCAN clustering nonlinear detector for MMW RoF system","authors":"Wu Xu, Peixuan Li, X. Zou, Ningyuan Zhong, W. Pan, Lian-shan Yan","doi":"10.1109/MWP54208.2022.9997800","DOIUrl":null,"url":null,"abstract":"We here propose and experimentally validate an improved density-based spatial of applications with noise clustering approach for mitigating the nonlinear distortions of analog millimeter-wave (MMW) radio over fiber (RoF) systems, to offer a self-adaptivity to various modulation formats as no training process and initialization parameters (e.g., signal constellation size) are required. In addition, fueled by the Manhattan distance clustering criteria, the FPGA implementation of such a machine-learning algorithm is achieved for verifying its practical feasibility. Validated by experiments, our proposal can effectively improve the nonlinearity tolerance of a 60-GHz MMW-RoF system transmitting single-carrier 64-QAM, 128-QAM and 256-QAM signals. Specifically, it helps to obtain a 1.25-dB improvement in the receiving sensitivity for the 64-QAM transmission in a fiber-wireless MMW channel consisting of 5-km fiber and 1-m wireless links.","PeriodicalId":127318,"journal":{"name":"2022 IEEE International Topical Meeting on Microwave Photonics (MWP)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Topical Meeting on Microwave Photonics (MWP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWP54208.2022.9997800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We here propose and experimentally validate an improved density-based spatial of applications with noise clustering approach for mitigating the nonlinear distortions of analog millimeter-wave (MMW) radio over fiber (RoF) systems, to offer a self-adaptivity to various modulation formats as no training process and initialization parameters (e.g., signal constellation size) are required. In addition, fueled by the Manhattan distance clustering criteria, the FPGA implementation of such a machine-learning algorithm is achieved for verifying its practical feasibility. Validated by experiments, our proposal can effectively improve the nonlinearity tolerance of a 60-GHz MMW-RoF system transmitting single-carrier 64-QAM, 128-QAM and 256-QAM signals. Specifically, it helps to obtain a 1.25-dB improvement in the receiving sensitivity for the 64-QAM transmission in a fiber-wireless MMW channel consisting of 5-km fiber and 1-m wireless links.
毫米波RoF系统中DBSCAN聚类非线性检测器的提出与FPGA实现
我们在此提出并实验验证了一种改进的基于密度的空间应用噪声聚类方法,以减轻模拟毫米波(MMW)无线光纤(RoF)系统的非线性失真,提供对各种调制格式的自适应,因为不需要训练过程和初始化参数(例如,信号星座大小)。此外,在曼哈顿距离聚类标准的推动下,实现了这种机器学习算法的FPGA实现,验证了其实际可行性。实验结果表明,该方案能够有效提高60 ghz毫米波rof系统传输64-QAM、128-QAM和256-QAM单载波信号的非线性容错能力。具体来说,它有助于在由5公里光纤和1米无线链路组成的光纤-无线毫米波信道中获得64-QAM传输的接收灵敏度提高1.25 db。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信