Computational cancer detection of pathological images based on an optimization method for color-index local auto-correlation feature extraction

Jia Qu, H. Nosato, H. Sakanashi, E. Takahashi, Kensuke Terai, N. Hiruta
{"title":"Computational cancer detection of pathological images based on an optimization method for color-index local auto-correlation feature extraction","authors":"Jia Qu, H. Nosato, H. Sakanashi, E. Takahashi, Kensuke Terai, N. Hiruta","doi":"10.1109/ISBI.2014.6867997","DOIUrl":null,"url":null,"abstract":"Aiming to lessen the burdens of the pathologist with efficient diagnosis assistance, this paper proposes a cancer detection method for pathological images utilizing color features based on color-index local auto-correlations (CILAC), applied to color-indexed images to utilize co-occurrence information about indexed pixels. Moreover, a method for the automatic optimization of feature extraction is also proposed. Based on a database including both benign and cancerous pathological images, experimental results show enhanced performance compared to prior research, which demonstrate the effectiveness of the proposed cancer detection method.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"10 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Aiming to lessen the burdens of the pathologist with efficient diagnosis assistance, this paper proposes a cancer detection method for pathological images utilizing color features based on color-index local auto-correlations (CILAC), applied to color-indexed images to utilize co-occurrence information about indexed pixels. Moreover, a method for the automatic optimization of feature extraction is also proposed. Based on a database including both benign and cancerous pathological images, experimental results show enhanced performance compared to prior research, which demonstrate the effectiveness of the proposed cancer detection method.
基于颜色指数局部自相关特征提取优化方法的病理图像计算癌检测
为了减轻病理医师的诊断负担,提供有效的诊断辅助,本文提出了一种基于颜色索引局部自相关(CILAC)的病理图像癌症检测方法,并将其应用于颜色索引图像,利用索引像素的共现信息。此外,还提出了一种特征提取的自动优化方法。基于包含良性和癌性病理图像的数据库,实验结果表明,与先前的研究相比,该方法的性能有所提高,证明了所提出的癌症检测方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信